--- layout: global title: Linear Methods - ML displayTitle: ML - Linear Methods --- `\[ \newcommand{\R}{\mathbb{R}} \newcommand{\E}{\mathbb{E}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\wv}{\mathbf{w}} \newcommand{\av}{\mathbf{\alpha}} \newcommand{\bv}{\mathbf{b}} \newcommand{\N}{\mathbb{N}} \newcommand{\id}{\mathbf{I}} \newcommand{\ind}{\mathbf{1}} \newcommand{\0}{\mathbf{0}} \newcommand{\unit}{\mathbf{e}} \newcommand{\one}{\mathbf{1}} \newcommand{\zero}{\mathbf{0}} \]` In MLlib, we implement popular linear methods such as logistic regression and linear least squares with L1 or L2 regularization. Refer to [the linear methods in mllib](mllib-linear-methods.html) for details. In `spark.ml`, we also include Pipelines API for [Elastic net](http://en.wikipedia.org/wiki/Elastic_net_regularization), a hybrid of L1 and L2 regularization proposed in [this paper](http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf). Mathematically it is defined as a linear combination of the L1-norm and the L2-norm: `\[ \alpha \|\wv\|_1 + (1-\alpha) \frac{1}{2}\|\wv\|_2^2, \alpha \in [0, 1]. \]` By setting $\alpha$ properly, it contains both L1 and L2 regularization as special cases. For example, if a [linear regression](https://en.wikipedia.org/wiki/Linear_regression) model is trained with the elastic net parameter $\alpha$ set to $1$, it is equivalent to a [Lasso](http://en.wikipedia.org/wiki/Least_squares#Lasso_method) model. On the other hand, if $\alpha$ is set to $0$, the trained model reduces to a [ridge regression](http://en.wikipedia.org/wiki/Tikhonov_regularization) model. We implement Pipelines API for both linear regression and logistic regression with elastic net regularization. **Examples**
{% highlight scala %} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.mllib.util.MLUtils // Load training data val training = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF() val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the weights and intercept for logistic regression println(s"Weights: ${lrModel.weights} Intercept: ${lrModel.intercept}") {% endhighlight %}
{% highlight java %} import org.apache.spark.ml.classification.LogisticRegression; import org.apache.spark.ml.classification.LogisticRegressionModel; import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.SQLContext; public class LogisticRegressionWithElasticNetExample { public static void main(String[] args) { SparkConf conf = new SparkConf() .setAppName("Logistic Regression with Elastic Net Example"); SparkContext sc = new SparkContext(conf); SQLContext sql = new SQLContext(sc); String path = "sample_libsvm_data.txt"; // Load training data DataFrame training = sql.createDataFrame(MLUtils.loadLibSVMFile(sc, path).toJavaRDD(), LabeledPoint.class); LogisticRegression lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model LogisticRegressionModel lrModel = lr.fit(training); // Print the weights and intercept for logistic regression System.out.println("Weights: " + lrModel.weights() + " Intercept: " + lrModel.intercept()); } } {% endhighlight %}
{% highlight python %} from pyspark.ml.classification import LogisticRegression from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.util import MLUtils # Load training data training = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF() lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8) # Fit the model lrModel = lr.fit(training) # Print the weights and intercept for logistic regression print("Weights: " + str(lrModel.weights)) print("Intercept: " + str(lrModel.intercept)) {% endhighlight %}
### Optimization The optimization algorithm underlies the implementation is called [Orthant-Wise Limited-memory QuasiNewton](http://research-srv.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf) (OWL-QN). It is an extension of L-BFGS that can effectively handle L1 regularization and elastic net.