--- layout: global title: Collaborative Filtering - MLlib displayTitle: MLlib - Collaborative Filtering --- * Table of contents {:toc} ## Collaborative filtering [Collaborative filtering](http://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering) is commonly used for recommender systems. These techniques aim to fill in the missing entries of a user-item association matrix. MLlib currently supports model-based collaborative filtering, in which users and products are described by a small set of latent factors that can be used to predict missing entries. In particular, we implement the [alternating least squares (ALS)](http://dl.acm.org/citation.cfm?id=1608614) algorithm to learn these latent factors. The implementation in MLlib has the following parameters: * *numBlocks* is the number of blocks used to parallelize computation (set to -1 to auto-configure). * *rank* is the number of latent factors in our model. * *iterations* is the number of iterations to run. * *lambda* specifies the regularization parameter in ALS. * *implicitPrefs* specifies whether to use the *explicit feedback* ALS variant or one adapted for *implicit feedback* data. * *alpha* is a parameter applicable to the implicit feedback variant of ALS that governs the *baseline* confidence in preference observations. ### Explicit vs. implicit feedback The standard approach to matrix factorization based collaborative filtering treats the entries in the user-item matrix as *explicit* preferences given by the user to the item. It is common in many real-world use cases to only have access to *implicit feedback* (e.g. views, clicks, purchases, likes, shares etc.). The approach used in MLlib to deal with such data is taken from [Collaborative Filtering for Implicit Feedback Datasets](http://dx.doi.org/10.1109/ICDM.2008.22). Essentially instead of trying to model the matrix of ratings directly, this approach treats the data as a combination of binary preferences and *confidence values*. The ratings are then related to the level of confidence in observed user preferences, rather than explicit ratings given to items. The model then tries to find latent factors that can be used to predict the expected preference of a user for an item. ## Examples
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default [ALS.train()](api/scala/index.html#org.apache.spark.mllib.recommendation.ALS$) method which assumes ratings are explicit. We evaluate the recommendation model by measuring the Mean Squared Error of rating prediction. {% highlight scala %} import org.apache.spark.mllib.recommendation.ALS import org.apache.spark.mllib.recommendation.Rating // Load and parse the data val data = sc.textFile("data/mllib/als/test.data") val ratings = data.map(_.split(',') match { case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble) }) // Build the recommendation model using ALS val rank = 10 val numIterations = 20 val model = ALS.train(ratings, rank, numIterations, 0.01) // Evaluate the model on rating data val usersProducts = ratings.map { case Rating(user, product, rate) => (user, product) } val predictions = model.predict(usersProducts).map { case Rating(user, product, rate) => ((user, product), rate) } val ratesAndPreds = ratings.map { case Rating(user, product, rate) => ((user, product), rate) }.join(predictions) val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) => val err = (r1 - r2) err * err }.mean() println("Mean Squared Error = " + MSE) {% endhighlight %} If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results. {% highlight scala %} val alpha = 0.01 val model = ALS.trainImplicit(ratings, rank, numIterations, alpha) {% endhighlight %}
All of MLlib's methods use Java-friendly types, so you can import and call them there the same way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by calling `.rdd()` on your `JavaRDD` object. A standalone application example that is equivalent to the provided example in Scala is given bellow: {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.recommendation.ALS; import org.apache.spark.mllib.recommendation.MatrixFactorizationModel; import org.apache.spark.mllib.recommendation.Rating; import org.apache.spark.SparkConf; public class CollaborativeFiltering { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Collaborative Filtering Example"); JavaSparkContext sc = new JavaSparkContext(conf); // Load and parse the data String path = "data/mllib/als/test.data"; JavaRDD data = sc.textFile(path); JavaRDD ratings = data.map( new Function() { public Rating call(String s) { String[] sarray = s.split(","); return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), Double.parseDouble(sarray[2])); } } ); // Build the recommendation model using ALS int rank = 10; int numIterations = 20; MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01); // Evaluate the model on rating data JavaRDD> userProducts = ratings.map( new Function>() { public Tuple2 call(Rating r) { return new Tuple2(r.user(), r.product()); } } ); JavaPairRDD, Double> predictions = JavaPairRDD.fromJavaRDD( model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map( new Function, Double>>() { public Tuple2, Double> call(Rating r){ return new Tuple2, Double>( new Tuple2(r.user(), r.product()), r.rating()); } } )); JavaRDD> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map( new Function, Double>>() { public Tuple2, Double> call(Rating r){ return new Tuple2, Double>( new Tuple2(r.user(), r.product()), r.rating()); } } )).join(predictions).values(); double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map( new Function, Object>() { public Object call(Tuple2 pair) { Double err = pair._1() - pair._2(); return err * err; } } ).rdd()).mean(); System.out.println("Mean Squared Error = " + MSE); } } {% endhighlight %} In order to run the above standalone application using Spark framework make sure that you follow the instructions provided at section [Standalone Applications](quick-start.html) of the quick-start guide. What is more, you should include to your build file *spark-mllib* as a dependency.
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation by measuring the Mean Squared Error of rating prediction. {% highlight python %} from pyspark.mllib.recommendation import ALS from numpy import array # Load and parse the data data = sc.textFile("data/mllib/als/test.data") ratings = data.map(lambda line: array([float(x) for x in line.split(',')])) # Build the recommendation model using Alternating Least Squares rank = 10 numIterations = 20 model = ALS.train(ratings, rank, numIterations) # Evaluate the model on training data testdata = ratings.map(lambda p: (int(p[0]), int(p[1]))) predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2])) ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions) MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).reduce(lambda x, y: x + y)/ratesAndPreds.count() print("Mean Squared Error = " + str(MSE)) {% endhighlight %} If the rating matrix is derived from other source of information (i.e., it is inferred from other signals), you can use the trainImplicit method to get better results. {% highlight python %} # Build the recommendation model using Alternating Least Squares based on implicit ratings model = ALS.trainImplicit(ratings, rank, numIterations, alpha = 0.01) {% endhighlight %}
## Tutorial [AMP Camp](http://ampcamp.berkeley.edu/) provides a hands-on tutorial for [personalized movie recommendation with MLlib](http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html).