--- layout: global title: Evaluation Metrics - MLlib displayTitle: MLlib - Evaluation Metrics --- * Table of contents {:toc} Spark's MLlib comes with a number of machine learning algorithms that can be used to learn from and make predictions on data. When these algorithms are applied to build machine learning models, there is a need to evaluate the performance of the model on some criteria, which depends on the application and its requirements. Spark's MLlib also provides a suite of metrics for the purpose of evaluating the performance of machine learning models. Specific machine learning algorithms fall under broader types of machine learning applications like classification, regression, clustering, etc. Each of these types have well established metrics for performance evaluation and those metrics that are currently available in Spark's MLlib are detailed in this section. ## Classification model evaluation While there are many different types of classification algorithms, the evaluation of classification models all share similar principles. In a [supervised classification problem](https://en.wikipedia.org/wiki/Statistical_classification), there exists a true output and a model-generated predicted output for each data point. For this reason, the results for each data point can be assigned to one of four categories: * True Positive (TP) - label is positive and prediction is also positive * True Negative (TN) - label is negative and prediction is also negative * False Positive (FP) - label is negative but prediction is positive * False Negative (FN) - label is positive but prediction is negative These four numbers are the building blocks for most classifier evaluation metrics. A fundamental point when considering classifier evaluation is that pure accuracy (i.e. was the prediction correct or incorrect) is not generally a good metric. The reason for this is because a dataset may be highly unbalanced. For example, if a model is designed to predict fraud from a dataset where 95% of the data points are _not fraud_ and 5% of the data points are _fraud_, then a naive classifier that predicts _not fraud_, regardless of input, will be 95% accurate. For this reason, metrics like [precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall) are typically used because they take into account the *type* of error. In most applications there is some desired balance between precision and recall, which can be captured by combining the two into a single metric, called the [F-measure](https://en.wikipedia.org/wiki/F1_score). ### Binary classification [Binary classifiers](https://en.wikipedia.org/wiki/Binary_classification) are used to separate the elements of a given dataset into one of two possible groups (e.g. fraud or not fraud) and is a special case of multiclass classification. Most binary classification metrics can be generalized to multiclass classification metrics. #### Threshold tuning It is import to understand that many classification models actually output a "score" (often times a probability) for each class, where a higher score indicates higher likelihood. In the binary case, the model may output a probability for each class: $P(Y=1|X)$ and $P(Y=0|X)$. Instead of simply taking the higher probability, there may be some cases where the model might need to be tuned so that it only predicts a class when the probability is very high (e.g. only block a credit card transaction if the model predicts fraud with >90% probability). Therefore, there is a prediction *threshold* which determines what the predicted class will be based on the probabilities that the model outputs. Tuning the prediction threshold will change the precision and recall of the model and is an important part of model optimization. In order to visualize how precision, recall, and other metrics change as a function of the threshold it is common practice to plot competing metrics against one another, parameterized by threshold. A P-R curve plots (precision, recall) points for different threshold values, while a [receiver operating characteristic](https://en.wikipedia.org/wiki/Receiver_operating_characteristic), or ROC, curve plots (recall, false positive rate) points. **Available metrics**
MetricDefinition
Precision (Postive Predictive Value) $PPV=\frac{TP}{TP + FP}$
Recall (True Positive Rate) $TPR=\frac{TP}{P}=\frac{TP}{TP + FN}$
F-measure $F(\beta) = \left(1 + \beta^2\right) \cdot \left(\frac{PPV \cdot TPR} {\beta^2 \cdot PPV + TPR}\right)$
Receiver Operating Characteristic (ROC) $FPR(T)=\int^\infty_{T} P_0(T)\,dT \\ TPR(T)=\int^\infty_{T} P_1(T)\,dT$
Area Under ROC Curve $AUROC=\int^1_{0} \frac{TP}{P} d\left(\frac{FP}{N}\right)$
Area Under Precision-Recall Curve $AUPRC=\int^1_{0} \frac{TP}{TP+FP} d\left(\frac{TP}{P}\right)$
**Examples**
The following code snippets illustrate how to load a sample dataset, train a binary classification algorithm on the data, and evaluate the performance of the algorithm by several binary evaluation metrics.
Refer to the [`LogisticRegressionWithLBFGS` Scala docs](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS) and [`BinaryClassificationMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.BinaryClassificationMetrics) for details on the API. {% highlight scala %} import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils // Load training data in LIBSVM format val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_binary_classification_data.txt") // Split data into training (60%) and test (40%) val Array(training, test) = data.randomSplit(Array(0.6, 0.4), seed = 11L) training.cache() // Run training algorithm to build the model val model = new LogisticRegressionWithLBFGS() .setNumClasses(2) .run(training) // Clear the prediction threshold so the model will return probabilities model.clearThreshold // Compute raw scores on the test set val predictionAndLabels = test.map { case LabeledPoint(label, features) => val prediction = model.predict(features) (prediction, label) } // Instantiate metrics object val metrics = new BinaryClassificationMetrics(predictionAndLabels) // Precision by threshold val precision = metrics.precisionByThreshold precision.foreach { case (t, p) => println(s"Threshold: $t, Precision: $p") } // Recall by threshold val recall = metrics.precisionByThreshold recall.foreach { case (t, r) => println(s"Threshold: $t, Recall: $r") } // Precision-Recall Curve val PRC = metrics.pr // F-measure val f1Score = metrics.fMeasureByThreshold f1Score.foreach { case (t, f) => println(s"Threshold: $t, F-score: $f, Beta = 1") } val beta = 0.5 val fScore = metrics.fMeasureByThreshold(beta) f1Score.foreach { case (t, f) => println(s"Threshold: $t, F-score: $f, Beta = 0.5") } // AUPRC val auPRC = metrics.areaUnderPR println("Area under precision-recall curve = " + auPRC) // Compute thresholds used in ROC and PR curves val thresholds = precision.map(_._1) // ROC Curve val roc = metrics.roc // AUROC val auROC = metrics.areaUnderROC println("Area under ROC = " + auROC) {% endhighlight %}
Refer to the [`LogisticRegressionModel` Java docs](api/java/org/apache/spark/mllib/classification/LogisticRegressionModel.html) and [`LogisticRegressionWithLBFGS` Java docs](api/java/org/apache/spark/mllib/classification/LogisticRegressionWithLBFGS.html) for details on the API. {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.rdd.RDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.classification.LogisticRegressionModel; import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS; import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics; import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; public class BinaryClassification { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Binary Classification Metrics"); SparkContext sc = new SparkContext(conf); String path = "data/mllib/sample_binary_classification_data.txt"; JavaRDD data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD(); // Split initial RDD into two... [60% training data, 40% testing data]. JavaRDD[] splits = data.randomSplit(new double[] {0.6, 0.4}, 11L); JavaRDD training = splits[0].cache(); JavaRDD test = splits[1]; // Run training algorithm to build the model. final LogisticRegressionModel model = new LogisticRegressionWithLBFGS() .setNumClasses(2) .run(training.rdd()); // Clear the prediction threshold so the model will return probabilities model.clearThreshold(); // Compute raw scores on the test set. JavaRDD> predictionAndLabels = test.map( new Function>() { public Tuple2 call(LabeledPoint p) { Double prediction = model.predict(p.features()); return new Tuple2(prediction, p.label()); } } ); // Get evaluation metrics. BinaryClassificationMetrics metrics = new BinaryClassificationMetrics(predictionAndLabels.rdd()); // Precision by threshold JavaRDD> precision = metrics.precisionByThreshold().toJavaRDD(); System.out.println("Precision by threshold: " + precision.toArray()); // Recall by threshold JavaRDD> recall = metrics.recallByThreshold().toJavaRDD(); System.out.println("Recall by threshold: " + recall.toArray()); // F Score by threshold JavaRDD> f1Score = metrics.fMeasureByThreshold().toJavaRDD(); System.out.println("F1 Score by threshold: " + f1Score.toArray()); JavaRDD> f2Score = metrics.fMeasureByThreshold(2.0).toJavaRDD(); System.out.println("F2 Score by threshold: " + f2Score.toArray()); // Precision-recall curve JavaRDD> prc = metrics.pr().toJavaRDD(); System.out.println("Precision-recall curve: " + prc.toArray()); // Thresholds JavaRDD thresholds = precision.map( new Function, Double>() { public Double call (Tuple2 t) { return new Double(t._1().toString()); } } ); // ROC Curve JavaRDD> roc = metrics.roc().toJavaRDD(); System.out.println("ROC curve: " + roc.toArray()); // AUPRC System.out.println("Area under precision-recall curve = " + metrics.areaUnderPR()); // AUROC System.out.println("Area under ROC = " + metrics.areaUnderROC()); // Save and load model model.save(sc, "myModelPath"); LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc, "myModelPath"); } } {% endhighlight %}
Refer to the [`BinaryClassificationMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.BinaryClassificationMetrics) and [`LogisticRegressionWithLBFGS` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.LogisticRegressionWithLBFGS) for more details on the API. {% highlight python %} from pyspark.mllib.classification import LogisticRegressionWithLBFGS from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.util import MLUtils # Several of the methods available in scala are currently missing from pyspark # Load training data in LIBSVM format data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_binary_classification_data.txt") # Split data into training (60%) and test (40%) training, test = data.randomSplit([0.6, 0.4], seed = 11L) training.cache() # Run training algorithm to build the model model = LogisticRegressionWithLBFGS.train(training) # Compute raw scores on the test set predictionAndLabels = test.map(lambda lp: (float(model.predict(lp.features)), lp.label)) # Instantiate metrics object metrics = BinaryClassificationMetrics(predictionAndLabels) # Area under precision-recall curve print("Area under PR = %s" % metrics.areaUnderPR) # Area under ROC curve print("Area under ROC = %s" % metrics.areaUnderROC) {% endhighlight %}
### Multiclass classification A [multiclass classification](https://en.wikipedia.org/wiki/Multiclass_classification) describes a classification problem where there are $M \gt 2$ possible labels for each data point (the case where $M=2$ is the binary classification problem). For example, classifying handwriting samples to the digits 0 to 9, having 10 possible classes. For multiclass metrics, the notion of positives and negatives is slightly different. Predictions and labels can still be positive or negative, but they must be considered under the context of a particular class. Each label and prediction take on the value of one of the multiple classes and so they are said to be positive for their particular class and negative for all other classes. So, a true positive occurs whenever the prediction and the label match, while a true negative occurs when neither the prediction nor the label take on the value of a given class. By this convention, there can be multiple true negatives for a given data sample. The extension of false negatives and false positives from the former definitions of positive and negative labels is straightforward. #### Label based metrics Opposed to binary classification where there are only two possible labels, multiclass classification problems have many possible labels and so the concept of label-based metrics is introduced. Overall precision measures precision across all labels - the number of times any class was predicted correctly (true positives) normalized by the number of data points. Precision by label considers only one class, and measures the number of time a specific label was predicted correctly normalized by the number of times that label appears in the output. **Available metrics** Define the class, or label, set as $$L = \{\ell_0, \ell_1, \ldots, \ell_{M-1} \} $$ The true output vector $\mathbf{y}$ consists of $N$ elements $$\mathbf{y}_0, \mathbf{y}_1, \ldots, \mathbf{y}_{N-1} \in L $$ A multiclass prediction algorithm generates a prediction vector $\hat{\mathbf{y}}$ of $N$ elements $$\hat{\mathbf{y}}_0, \hat{\mathbf{y}}_1, \ldots, \hat{\mathbf{y}}_{N-1} \in L $$ For this section, a modified delta function $\hat{\delta}(x)$ will prove useful $$\hat{\delta}(x) = \begin{cases}1 & \text{if $x = 0$}, \\ 0 & \text{otherwise}.\end{cases}$$
MetricDefinition
Confusion Matrix $C_{ij} = \sum_{k=0}^{N-1} \hat{\delta}(\mathbf{y}_k-\ell_i) \cdot \hat{\delta}(\hat{\mathbf{y}}_k - \ell_j)\\ \\ \left( \begin{array}{ccc} \sum_{k=0}^{N-1} \hat{\delta}(\mathbf{y}_k-\ell_1) \cdot \hat{\delta}(\hat{\mathbf{y}}_k - \ell_1) & \ldots & \sum_{k=0}^{N-1} \hat{\delta}(\mathbf{y}_k-\ell_1) \cdot \hat{\delta}(\hat{\mathbf{y}}_k - \ell_N) \\ \vdots & \ddots & \vdots \\ \sum_{k=0}^{N-1} \hat{\delta}(\mathbf{y}_k-\ell_N) \cdot \hat{\delta}(\hat{\mathbf{y}}_k - \ell_1) & \ldots & \sum_{k=0}^{N-1} \hat{\delta}(\mathbf{y}_k-\ell_N) \cdot \hat{\delta}(\hat{\mathbf{y}}_k - \ell_N) \end{array} \right)$
Overall Precision $PPV = \frac{TP}{TP + FP} = \frac{1}{N}\sum_{i=0}^{N-1} \hat{\delta}\left(\hat{\mathbf{y}}_i - \mathbf{y}_i\right)$
Overall Recall $TPR = \frac{TP}{TP + FN} = \frac{1}{N}\sum_{i=0}^{N-1} \hat{\delta}\left(\hat{\mathbf{y}}_i - \mathbf{y}_i\right)$
Overall F1-measure $F1 = 2 \cdot \left(\frac{PPV \cdot TPR} {PPV + TPR}\right)$
Precision by label $PPV(\ell) = \frac{TP}{TP + FP} = \frac{\sum_{i=0}^{N-1} \hat{\delta}(\hat{\mathbf{y}}_i - \ell) \cdot \hat{\delta}(\mathbf{y}_i - \ell)} {\sum_{i=0}^{N-1} \hat{\delta}(\hat{\mathbf{y}}_i - \ell)}$
Recall by label $TPR(\ell)=\frac{TP}{P} = \frac{\sum_{i=0}^{N-1} \hat{\delta}(\hat{\mathbf{y}}_i - \ell) \cdot \hat{\delta}(\mathbf{y}_i - \ell)} {\sum_{i=0}^{N-1} \hat{\delta}(\mathbf{y}_i - \ell)}$
F-measure by label $F(\beta, \ell) = \left(1 + \beta^2\right) \cdot \left(\frac{PPV(\ell) \cdot TPR(\ell)} {\beta^2 \cdot PPV(\ell) + TPR(\ell)}\right)$
Weighted precision $PPV_{w}= \frac{1}{N} \sum\nolimits_{\ell \in L} PPV(\ell) \cdot \sum_{i=0}^{N-1} \hat{\delta}(\mathbf{y}_i-\ell)$
Weighted recall $TPR_{w}= \frac{1}{N} \sum\nolimits_{\ell \in L} TPR(\ell) \cdot \sum_{i=0}^{N-1} \hat{\delta}(\mathbf{y}_i-\ell)$
Weighted F-measure $F_{w}(\beta)= \frac{1}{N} \sum\nolimits_{\ell \in L} F(\beta, \ell) \cdot \sum_{i=0}^{N-1} \hat{\delta}(\mathbf{y}_i-\ell)$
**Examples**
The following code snippets illustrate how to load a sample dataset, train a multiclass classification algorithm on the data, and evaluate the performance of the algorithm by several multiclass classification evaluation metrics.
Refer to the [`MulticlassMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.MulticlassMetrics) for details on the API. {% highlight scala %} import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS import org.apache.spark.mllib.evaluation.MulticlassMetrics import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils // Load training data in LIBSVM format val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt") // Split data into training (60%) and test (40%) val Array(training, test) = data.randomSplit(Array(0.6, 0.4), seed = 11L) training.cache() // Run training algorithm to build the model val model = new LogisticRegressionWithLBFGS() .setNumClasses(3) .run(training) // Compute raw scores on the test set val predictionAndLabels = test.map { case LabeledPoint(label, features) => val prediction = model.predict(features) (prediction, label) } // Instantiate metrics object val metrics = new MulticlassMetrics(predictionAndLabels) // Confusion matrix println("Confusion matrix:") println(metrics.confusionMatrix) // Overall Statistics val precision = metrics.precision val recall = metrics.recall // same as true positive rate val f1Score = metrics.fMeasure println("Summary Statistics") println(s"Precision = $precision") println(s"Recall = $recall") println(s"F1 Score = $f1Score") // Precision by label val labels = metrics.labels labels.foreach { l => println(s"Precision($l) = " + metrics.precision(l)) } // Recall by label labels.foreach { l => println(s"Recall($l) = " + metrics.recall(l)) } // False positive rate by label labels.foreach { l => println(s"FPR($l) = " + metrics.falsePositiveRate(l)) } // F-measure by label labels.foreach { l => println(s"F1-Score($l) = " + metrics.fMeasure(l)) } // Weighted stats println(s"Weighted precision: ${metrics.weightedPrecision}") println(s"Weighted recall: ${metrics.weightedRecall}") println(s"Weighted F1 score: ${metrics.weightedFMeasure}") println(s"Weighted false positive rate: ${metrics.weightedFalsePositiveRate}") {% endhighlight %}
Refer to the [`MulticlassMetrics` Java docs](api/java/org/apache/spark/mllib/evaluation/MulticlassMetrics.html) for details on the API. {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.rdd.RDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.classification.LogisticRegressionModel; import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS; import org.apache.spark.mllib.evaluation.MulticlassMetrics; import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; import org.apache.spark.mllib.linalg.Matrix; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; public class MulticlassClassification { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Multiclass Classification Metrics"); SparkContext sc = new SparkContext(conf); String path = "data/mllib/sample_multiclass_classification_data.txt"; JavaRDD data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD(); // Split initial RDD into two... [60% training data, 40% testing data]. JavaRDD[] splits = data.randomSplit(new double[] {0.6, 0.4}, 11L); JavaRDD training = splits[0].cache(); JavaRDD test = splits[1]; // Run training algorithm to build the model. final LogisticRegressionModel model = new LogisticRegressionWithLBFGS() .setNumClasses(3) .run(training.rdd()); // Compute raw scores on the test set. JavaRDD> predictionAndLabels = test.map( new Function>() { public Tuple2 call(LabeledPoint p) { Double prediction = model.predict(p.features()); return new Tuple2(prediction, p.label()); } } ); // Get evaluation metrics. MulticlassMetrics metrics = new MulticlassMetrics(predictionAndLabels.rdd()); // Confusion matrix Matrix confusion = metrics.confusionMatrix(); System.out.println("Confusion matrix: \n" + confusion); // Overall statistics System.out.println("Precision = " + metrics.precision()); System.out.println("Recall = " + metrics.recall()); System.out.println("F1 Score = " + metrics.fMeasure()); // Stats by labels for (int i = 0; i < metrics.labels().length; i++) { System.out.format("Class %f precision = %f\n", metrics.labels()[i], metrics.precision(metrics.labels()[i])); System.out.format("Class %f recall = %f\n", metrics.labels()[i], metrics.recall(metrics.labels()[i])); System.out.format("Class %f F1 score = %f\n", metrics.labels()[i], metrics.fMeasure(metrics.labels()[i])); } //Weighted stats System.out.format("Weighted precision = %f\n", metrics.weightedPrecision()); System.out.format("Weighted recall = %f\n", metrics.weightedRecall()); System.out.format("Weighted F1 score = %f\n", metrics.weightedFMeasure()); System.out.format("Weighted false positive rate = %f\n", metrics.weightedFalsePositiveRate()); // Save and load model model.save(sc, "myModelPath"); LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc, "myModelPath"); } } {% endhighlight %}
Refer to the [`MulticlassMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.MulticlassMetrics) for more details on the API. {% highlight python %} from pyspark.mllib.classification import LogisticRegressionWithLBFGS from pyspark.mllib.util import MLUtils from pyspark.mllib.evaluation import MulticlassMetrics # Load training data in LIBSVM format data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt") # Split data into training (60%) and test (40%) training, test = data.randomSplit([0.6, 0.4], seed = 11L) training.cache() # Run training algorithm to build the model model = LogisticRegressionWithLBFGS.train(training, numClasses=3) # Compute raw scores on the test set predictionAndLabels = test.map(lambda lp: (float(model.predict(lp.features)), lp.label)) # Instantiate metrics object metrics = MulticlassMetrics(predictionAndLabels) # Overall statistics precision = metrics.precision() recall = metrics.recall() f1Score = metrics.fMeasure() print("Summary Stats") print("Precision = %s" % precision) print("Recall = %s" % recall) print("F1 Score = %s" % f1Score) # Statistics by class labels = data.map(lambda lp: lp.label).distinct().collect() for label in sorted(labels): print("Class %s precision = %s" % (label, metrics.precision(label))) print("Class %s recall = %s" % (label, metrics.recall(label))) print("Class %s F1 Measure = %s" % (label, metrics.fMeasure(label, beta=1.0))) # Weighted stats print("Weighted recall = %s" % metrics.weightedRecall) print("Weighted precision = %s" % metrics.weightedPrecision) print("Weighted F(1) Score = %s" % metrics.weightedFMeasure()) print("Weighted F(0.5) Score = %s" % metrics.weightedFMeasure(beta=0.5)) print("Weighted false positive rate = %s" % metrics.weightedFalsePositiveRate) {% endhighlight %}
### Multilabel classification A [multilabel classification](https://en.wikipedia.org/wiki/Multi-label_classification) problem involves mapping each sample in a dataset to a set of class labels. In this type of classification problem, the labels are not mutually exclusive. For example, when classifying a set of news articles into topics, a single article might be both science and politics. Because the labels are not mutually exclusive, the predictions and true labels are now vectors of label *sets*, rather than vectors of labels. Multilabel metrics, therefore, extend the fundamental ideas of precision, recall, etc. to operations on sets. For example, a true positive for a given class now occurs when that class exists in the predicted set and it exists in the true label set, for a specific data point. **Available metrics** Here we define a set $D$ of $N$ documents $$D = \left\{d_0, d_1, ..., d_{N-1}\right\}$$ Define $L_0, L_1, ..., L_{N-1}$ to be a family of label sets and $P_0, P_1, ..., P_{N-1}$ to be a family of prediction sets where $L_i$ and $P_i$ are the label set and prediction set, respectively, that correspond to document $d_i$. The set of all unique labels is given by $$L = \bigcup_{k=0}^{N-1} L_k$$ The following definition of indicator function $I_A(x)$ on a set $A$ will be necessary $$I_A(x) = \begin{cases}1 & \text{if $x \in A$}, \\ 0 & \text{otherwise}.\end{cases}$$
MetricDefinition
Precision$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|P_i \cap L_i\right|}{\left|P_i\right|}$
Recall$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|L_i \cap P_i\right|}{\left|L_i\right|}$
Accuracy $\frac{1}{N} \sum_{i=0}^{N - 1} \frac{\left|L_i \cap P_i \right|} {\left|L_i\right| + \left|P_i\right| - \left|L_i \cap P_i \right|}$
Precision by label$PPV(\ell)=\frac{TP}{TP + FP}= \frac{\sum_{i=0}^{N-1} I_{P_i}(\ell) \cdot I_{L_i}(\ell)} {\sum_{i=0}^{N-1} I_{P_i}(\ell)}$
Recall by label$TPR(\ell)=\frac{TP}{P}= \frac{\sum_{i=0}^{N-1} I_{P_i}(\ell) \cdot I_{L_i}(\ell)} {\sum_{i=0}^{N-1} I_{L_i}(\ell)}$
F1-measure by label$F1(\ell) = 2 \cdot \left(\frac{PPV(\ell) \cdot TPR(\ell)} {PPV(\ell) + TPR(\ell)}\right)$
Hamming Loss $\frac{1}{N \cdot \left|L\right|} \sum_{i=0}^{N - 1} \left|L_i\right| + \left|P_i\right| - 2\left|L_i \cap P_i\right|$
Subset Accuracy $\frac{1}{N} \sum_{i=0}^{N-1} I_{\{L_i\}}(P_i)$
F1 Measure $\frac{1}{N} \sum_{i=0}^{N-1} 2 \frac{\left|P_i \cap L_i\right|}{\left|P_i\right| \cdot \left|L_i\right|}$
Micro precision $\frac{TP}{TP + FP}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|} {\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
Micro recall $\frac{TP}{TP + FN}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|} {\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right|}$
Micro F1 Measure $2 \cdot \frac{TP}{2 \cdot TP + FP + FN}=2 \cdot \frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{2 \cdot \sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
**Examples** The following code snippets illustrate how to evaluate the performance of a multilabel classifer. The examples use the fake prediction and label data for multilabel classification that is shown below. Document predictions: * doc 0 - predict 0, 1 - class 0, 2 * doc 1 - predict 0, 2 - class 0, 1 * doc 2 - predict none - class 0 * doc 3 - predict 2 - class 2 * doc 4 - predict 2, 0 - class 2, 0 * doc 5 - predict 0, 1, 2 - class 0, 1 * doc 6 - predict 1 - class 1, 2 Predicted classes: * class 0 - doc 0, 1, 4, 5 (total 4) * class 1 - doc 0, 5, 6 (total 3) * class 2 - doc 1, 3, 4, 5 (total 4) True classes: * class 0 - doc 0, 1, 2, 4, 5 (total 5) * class 1 - doc 1, 5, 6 (total 3) * class 2 - doc 0, 3, 4, 6 (total 4)
Refer to the [`MultilabelMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.MultilabelMetrics) for details on the API. {% highlight scala %} import org.apache.spark.mllib.evaluation.MultilabelMetrics import org.apache.spark.rdd.RDD; val scoreAndLabels: RDD[(Array[Double], Array[Double])] = sc.parallelize( Seq((Array(0.0, 1.0), Array(0.0, 2.0)), (Array(0.0, 2.0), Array(0.0, 1.0)), (Array(), Array(0.0)), (Array(2.0), Array(2.0)), (Array(2.0, 0.0), Array(2.0, 0.0)), (Array(0.0, 1.0, 2.0), Array(0.0, 1.0)), (Array(1.0), Array(1.0, 2.0))), 2) // Instantiate metrics object val metrics = new MultilabelMetrics(scoreAndLabels) // Summary stats println(s"Recall = ${metrics.recall}") println(s"Precision = ${metrics.precision}") println(s"F1 measure = ${metrics.f1Measure}") println(s"Accuracy = ${metrics.accuracy}") // Individual label stats metrics.labels.foreach(label => println(s"Class $label precision = ${metrics.precision(label)}")) metrics.labels.foreach(label => println(s"Class $label recall = ${metrics.recall(label)}")) metrics.labels.foreach(label => println(s"Class $label F1-score = ${metrics.f1Measure(label)}")) // Micro stats println(s"Micro recall = ${metrics.microRecall}") println(s"Micro precision = ${metrics.microPrecision}") println(s"Micro F1 measure = ${metrics.microF1Measure}") // Hamming loss println(s"Hamming loss = ${metrics.hammingLoss}") // Subset accuracy println(s"Subset accuracy = ${metrics.subsetAccuracy}") {% endhighlight %}
Refer to the [`MultilabelMetrics` Java docs](api/java/org/apache/spark/mllib/evaluation/MultilabelMetrics.html) for details on the API. {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.rdd.RDD; import org.apache.spark.mllib.evaluation.MultilabelMetrics; import org.apache.spark.SparkConf; import java.util.Arrays; import java.util.List; public class MultilabelClassification { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Multilabel Classification Metrics"); JavaSparkContext sc = new JavaSparkContext(conf); List> data = Arrays.asList( new Tuple2(new double[]{0.0, 1.0}, new double[]{0.0, 2.0}), new Tuple2(new double[]{0.0, 2.0}, new double[]{0.0, 1.0}), new Tuple2(new double[]{}, new double[]{0.0}), new Tuple2(new double[]{2.0}, new double[]{2.0}), new Tuple2(new double[]{2.0, 0.0}, new double[]{2.0, 0.0}), new Tuple2(new double[]{0.0, 1.0, 2.0}, new double[]{0.0, 1.0}), new Tuple2(new double[]{1.0}, new double[]{1.0, 2.0}) ); JavaRDD> scoreAndLabels = sc.parallelize(data); // Instantiate metrics object MultilabelMetrics metrics = new MultilabelMetrics(scoreAndLabels.rdd()); // Summary stats System.out.format("Recall = %f\n", metrics.recall()); System.out.format("Precision = %f\n", metrics.precision()); System.out.format("F1 measure = %f\n", metrics.f1Measure()); System.out.format("Accuracy = %f\n", metrics.accuracy()); // Stats by labels for (int i = 0; i < metrics.labels().length - 1; i++) { System.out.format("Class %1.1f precision = %f\n", metrics.labels()[i], metrics.precision(metrics.labels()[i])); System.out.format("Class %1.1f recall = %f\n", metrics.labels()[i], metrics.recall(metrics.labels()[i])); System.out.format("Class %1.1f F1 score = %f\n", metrics.labels()[i], metrics.f1Measure(metrics.labels()[i])); } // Micro stats System.out.format("Micro recall = %f\n", metrics.microRecall()); System.out.format("Micro precision = %f\n", metrics.microPrecision()); System.out.format("Micro F1 measure = %f\n", metrics.microF1Measure()); // Hamming loss System.out.format("Hamming loss = %f\n", metrics.hammingLoss()); // Subset accuracy System.out.format("Subset accuracy = %f\n", metrics.subsetAccuracy()); } } {% endhighlight %}
Refer to the [`MultilabelMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.MultilabelMetrics) for more details on the API. {% highlight python %} from pyspark.mllib.evaluation import MultilabelMetrics scoreAndLabels = sc.parallelize([ ([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]), ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]), ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])]) # Instantiate metrics object metrics = MultilabelMetrics(scoreAndLabels) # Summary stats print("Recall = %s" % metrics.recall()) print("Precision = %s" % metrics.precision()) print("F1 measure = %s" % metrics.f1Measure()) print("Accuracy = %s" % metrics.accuracy) # Individual label stats labels = scoreAndLabels.flatMap(lambda x: x[1]).distinct().collect() for label in labels: print("Class %s precision = %s" % (label, metrics.precision(label))) print("Class %s recall = %s" % (label, metrics.recall(label))) print("Class %s F1 Measure = %s" % (label, metrics.f1Measure(label))) # Micro stats print("Micro precision = %s" % metrics.microPrecision) print("Micro recall = %s" % metrics.microRecall) print("Micro F1 measure = %s" % metrics.microF1Measure) # Hamming loss print("Hamming loss = %s" % metrics.hammingLoss) # Subset accuracy print("Subset accuracy = %s" % metrics.subsetAccuracy) {% endhighlight %}
### Ranking systems The role of a ranking algorithm (often thought of as a [recommender system](https://en.wikipedia.org/wiki/Recommender_system)) is to return to the user a set of relevant items or documents based on some training data. The definition of relevance may vary and is usually application specific. Ranking system metrics aim to quantify the effectiveness of these rankings or recommendations in various contexts. Some metrics compare a set of recommended documents to a ground truth set of relevant documents, while other metrics may incorporate numerical ratings explicitly. **Available metrics** A ranking system usually deals with a set of $M$ users $$U = \left\{u_0, u_1, ..., u_{M-1}\right\}$$ Each user ($u_i$) having a set of $N$ ground truth relevant documents $$D_i = \left\{d_0, d_1, ..., d_{N-1}\right\}$$ And a list of $Q$ recommended documents, in order of decreasing relevance $$R_i = \left[r_0, r_1, ..., r_{Q-1}\right]$$ The goal of the ranking system is to produce the most relevant set of documents for each user. The relevance of the sets and the effectiveness of the algorithms can be measured using the metrics listed below. It is necessary to define a function which, provided a recommended document and a set of ground truth relevant documents, returns a relevance score for the recommended document. $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{cases}$$
MetricDefinitionNotes
Precision at k $p(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{k} \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} rel_{D_i}(R_i(j))}$ Precision at k is a measure of how many of the first k recommended documents are in the set of true relevant documents averaged across all users. In this metric, the order of the recommendations is not taken into account.
Mean Average Precision $MAP=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{\left|D_i\right|} \sum_{j=0}^{Q-1} \frac{rel_{D_i}(R_i(j))}{j + 1}}$ MAP is a measure of how many of the recommended documents are in the set of true relevant documents, where the order of the recommendations is taken into account (i.e. penalty for highly relevant documents is higher).
Normalized Discounted Cumulative Gain $NDCG(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{IDCG(D_i, k)}\sum_{j=0}^{n-1} \frac{rel_{D_i}(R_i(j))}{\text{ln}(j+1)}} \\ \text{Where} \\ \hspace{5 mm} n = \text{min}\left(\text{max}\left(|R_i|,|D_i|\right),k\right) \\ \hspace{5 mm} IDCG(D, k) = \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} \frac{1}{\text{ln}(j+1)}$ NDCG at k is a measure of how many of the first k recommended documents are in the set of true relevant documents averaged across all users. In contrast to precision at k, this metric takes into account the order of the recommendations (documents are assumed to be in order of decreasing relevance).
**Examples** The following code snippets illustrate how to load a sample dataset, train an alternating least squares recommendation model on the data, and evaluate the performance of the recommender by several ranking metrics. A brief summary of the methodology is provided below. MovieLens ratings are on a scale of 1-5: * 5: Must see * 4: Will enjoy * 3: It's okay * 2: Fairly bad * 1: Awful So we should not recommend a movie if the predicted rating is less than 3. To map ratings to confidence scores, we use: * 5 -> 2.5 * 4 -> 1.5 * 3 -> 0.5 * 2 -> -0.5 * 1 -> -1.5. This mappings means unobserved entries are generally between It's okay and Fairly bad. The semantics of 0 in this expanded world of non-positive weights are "the same as never having interacted at all."
Refer to the [`RegressionMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.RegressionMetrics) and [`RankingMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.RankingMetrics) for details on the API. {% highlight scala %} import org.apache.spark.mllib.evaluation.{RegressionMetrics, RankingMetrics} import org.apache.spark.mllib.recommendation.{ALS, Rating} // Read in the ratings data val ratings = sc.textFile("data/mllib/sample_movielens_data.txt").map { line => val fields = line.split("::") Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble - 2.5) }.cache() // Map ratings to 1 or 0, 1 indicating a movie that should be recommended val binarizedRatings = ratings.map(r => Rating(r.user, r.product, if (r.rating > 0) 1.0 else 0.0)).cache() // Summarize ratings val numRatings = ratings.count() val numUsers = ratings.map(_.user).distinct().count() val numMovies = ratings.map(_.product).distinct().count() println(s"Got $numRatings ratings from $numUsers users on $numMovies movies.") // Build the model val numIterations = 10 val rank = 10 val lambda = 0.01 val model = ALS.train(ratings, rank, numIterations, lambda) // Define a function to scale ratings from 0 to 1 def scaledRating(r: Rating): Rating = { val scaledRating = math.max(math.min(r.rating, 1.0), 0.0) Rating(r.user, r.product, scaledRating) } // Get sorted top ten predictions for each user and then scale from [0, 1] val userRecommended = model.recommendProductsForUsers(10).map{ case (user, recs) => (user, recs.map(scaledRating)) } // Assume that any movie a user rated 3 or higher (which maps to a 1) is a relevant document // Compare with top ten most relevant documents val userMovies = binarizedRatings.groupBy(_.user) val relevantDocuments = userMovies.join(userRecommended).map{ case (user, (actual, predictions)) => (predictions.map(_.product), actual.filter(_.rating > 0.0).map(_.product).toArray) } // Instantiate metrics object val metrics = new RankingMetrics(relevantDocuments) // Precision at K Array(1, 3, 5).foreach{ k => println(s"Precision at $k = ${metrics.precisionAt(k)}") } // Mean average precision println(s"Mean average precision = ${metrics.meanAveragePrecision}") // Normalized discounted cumulative gain Array(1, 3, 5).foreach{ k => println(s"NDCG at $k = ${metrics.ndcgAt(k)}") } // Get predictions for each data point val allPredictions = model.predict(ratings.map(r => (r.user, r.product))).map(r => ((r.user, r.product), r.rating)) val allRatings = ratings.map(r => ((r.user, r.product), r.rating)) val predictionsAndLabels = allPredictions.join(allRatings).map{ case ((user, product), (predicted, actual)) => (predicted, actual) } // Get the RMSE using regression metrics val regressionMetrics = new RegressionMetrics(predictionsAndLabels) println(s"RMSE = ${regressionMetrics.rootMeanSquaredError}") // R-squared println(s"R-squared = ${regressionMetrics.r2}") {% endhighlight %}
Refer to the [`RegressionMetrics` Java docs](api/java/org/apache/spark/mllib/evaluation/RegressionMetrics.html) and [`RankingMetrics` Java docs](api/java/org/apache/spark/mllib/evaluation/RankingMetrics.html) for details on the API. {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.rdd.RDD; import org.apache.spark.mllib.recommendation.MatrixFactorizationModel; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.Function; import java.util.*; import org.apache.spark.mllib.evaluation.RegressionMetrics; import org.apache.spark.mllib.evaluation.RankingMetrics; import org.apache.spark.mllib.recommendation.ALS; import org.apache.spark.mllib.recommendation.Rating; // Read in the ratings data public class Ranking { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Ranking Metrics"); JavaSparkContext sc = new JavaSparkContext(conf); String path = "data/mllib/sample_movielens_data.txt"; JavaRDD data = sc.textFile(path); JavaRDD ratings = data.map( new Function() { public Rating call(String line) { String[] parts = line.split("::"); return new Rating(Integer.parseInt(parts[0]), Integer.parseInt(parts[1]), Double.parseDouble(parts[2]) - 2.5); } } ); ratings.cache(); // Train an ALS model final MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), 10, 10, 0.01); // Get top 10 recommendations for every user and scale ratings from 0 to 1 JavaRDD> userRecs = model.recommendProductsForUsers(10).toJavaRDD(); JavaRDD> userRecsScaled = userRecs.map( new Function, Tuple2>() { public Tuple2 call(Tuple2 t) { Rating[] scaledRatings = new Rating[t._2().length]; for (int i = 0; i < scaledRatings.length; i++) { double newRating = Math.max(Math.min(t._2()[i].rating(), 1.0), 0.0); scaledRatings[i] = new Rating(t._2()[i].user(), t._2()[i].product(), newRating); } return new Tuple2(t._1(), scaledRatings); } } ); JavaPairRDD userRecommended = JavaPairRDD.fromJavaRDD(userRecsScaled); // Map ratings to 1 or 0, 1 indicating a movie that should be recommended JavaRDD binarizedRatings = ratings.map( new Function() { public Rating call(Rating r) { double binaryRating; if (r.rating() > 0.0) { binaryRating = 1.0; } else { binaryRating = 0.0; } return new Rating(r.user(), r.product(), binaryRating); } } ); // Group ratings by common user JavaPairRDD> userMovies = binarizedRatings.groupBy( new Function() { public Object call(Rating r) { return r.user(); } } ); // Get true relevant documents from all user ratings JavaPairRDD> userMoviesList = userMovies.mapValues( new Function, List>() { public List call(Iterable docs) { List products = new ArrayList(); for (Rating r : docs) { if (r.rating() > 0.0) { products.add(r.product()); } } return products; } } ); // Extract the product id from each recommendation JavaPairRDD> userRecommendedList = userRecommended.mapValues( new Function>() { public List call(Rating[] docs) { List products = new ArrayList(); for (Rating r : docs) { products.add(r.product()); } return products; } } ); JavaRDD, List>> relevantDocs = userMoviesList.join(userRecommendedList).values(); // Instantiate the metrics object RankingMetrics metrics = RankingMetrics.of(relevantDocs); // Precision and NDCG at k Integer[] kVector = {1, 3, 5}; for (Integer k : kVector) { System.out.format("Precision at %d = %f\n", k, metrics.precisionAt(k)); System.out.format("NDCG at %d = %f\n", k, metrics.ndcgAt(k)); } // Mean average precision System.out.format("Mean average precision = %f\n", metrics.meanAveragePrecision()); // Evaluate the model using numerical ratings and regression metrics JavaRDD> userProducts = ratings.map( new Function>() { public Tuple2 call(Rating r) { return new Tuple2(r.user(), r.product()); } } ); JavaPairRDD, Object> predictions = JavaPairRDD.fromJavaRDD( model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map( new Function, Object>>() { public Tuple2, Object> call(Rating r){ return new Tuple2, Object>( new Tuple2(r.user(), r.product()), r.rating()); } } )); JavaRDD> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map( new Function, Object>>() { public Tuple2, Object> call(Rating r){ return new Tuple2, Object>( new Tuple2(r.user(), r.product()), r.rating()); } } )).join(predictions).values(); // Create regression metrics object RegressionMetrics regressionMetrics = new RegressionMetrics(ratesAndPreds.rdd()); // Root mean squared error System.out.format("RMSE = %f\n", regressionMetrics.rootMeanSquaredError()); // R-squared System.out.format("R-squared = %f\n", regressionMetrics.r2()); } } {% endhighlight %}
Refer to the [`RegressionMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RegressionMetrics) and [`RankingMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RankingMetrics) for more details on the API. {% highlight python %} from pyspark.mllib.recommendation import ALS, Rating from pyspark.mllib.evaluation import RegressionMetrics, RankingMetrics # Read in the ratings data lines = sc.textFile("data/mllib/sample_movielens_data.txt") def parseLine(line): fields = line.split("::") return Rating(int(fields[0]), int(fields[1]), float(fields[2]) - 2.5) ratings = lines.map(lambda r: parseLine(r)) # Train a model on to predict user-product ratings model = ALS.train(ratings, 10, 10, 0.01) # Get predicted ratings on all existing user-product pairs testData = ratings.map(lambda p: (p.user, p.product)) predictions = model.predictAll(testData).map(lambda r: ((r.user, r.product), r.rating)) ratingsTuple = ratings.map(lambda r: ((r.user, r.product), r.rating)) scoreAndLabels = predictions.join(ratingsTuple).map(lambda tup: tup[1]) # Instantiate regression metrics to compare predicted and actual ratings metrics = RegressionMetrics(scoreAndLabels) # Root mean sqaured error print("RMSE = %s" % metrics.rootMeanSquaredError) # R-squared print("R-squared = %s" % metrics.r2) {% endhighlight %}
## Regression model evaluation [Regression analysis](https://en.wikipedia.org/wiki/Regression_analysis) is used when predicting a continuous output variable from a number of independent variables. **Available metrics**
MetricDefinition
Mean Squared Error (MSE) $MSE = \frac{\sum_{i=0}^{N-1} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2}{N}$
Root Mean Squared Error (RMSE) $RMSE = \sqrt{\frac{\sum_{i=0}^{N-1} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2}{N}}$
Mean Absoloute Error (MAE) $MAE=\sum_{i=0}^{N-1} \left|\mathbf{y}_i - \hat{\mathbf{y}}_i\right|$
Coefficient of Determination $(R^2)$ $R^2=1 - \frac{MSE}{\text{VAR}(\mathbf{y}) \cdot (N-1)}=1-\frac{\sum_{i=0}^{N-1} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2}{\sum_{i=0}^{N-1}(\mathbf{y}_i-\bar{\mathbf{y}})^2}$
Explained Variance $1 - \frac{\text{VAR}(\mathbf{y} - \mathbf{\hat{y}})}{\text{VAR}(\mathbf{y})}$
**Examples**
The following code snippets illustrate how to load a sample dataset, train a linear regression algorithm on the data, and evaluate the performance of the algorithm by several regression metrics.
Refer to the [`RegressionMetrics` Scala docs](api/scala/index.html#org.apache.spark.mllib.evaluation.RegressionMetrics) for details on the API. {% highlight scala %} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.regression.LinearRegressionModel import org.apache.spark.mllib.regression.LinearRegressionWithSGD import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.evaluation.RegressionMetrics import org.apache.spark.mllib.util.MLUtils // Load the data val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_linear_regression_data.txt").cache() // Build the model val numIterations = 100 val model = LinearRegressionWithSGD.train(data, numIterations) // Get predictions val valuesAndPreds = data.map{ point => val prediction = model.predict(point.features) (prediction, point.label) } // Instantiate metrics object val metrics = new RegressionMetrics(valuesAndPreds) // Squared error println(s"MSE = ${metrics.meanSquaredError}") println(s"RMSE = ${metrics.rootMeanSquaredError}") // R-squared println(s"R-squared = ${metrics.r2}") // Mean absolute error println(s"MAE = ${metrics.meanAbsoluteError}") // Explained variance println(s"Explained variance = ${metrics.explainedVariance}") {% endhighlight %}
Refer to the [`RegressionMetrics` Java docs](api/java/org/apache/spark/mllib/evaluation/RegressionMetrics.html) for details on the API. {% highlight java %} import scala.Tuple2; import org.apache.spark.api.java.*; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.regression.LinearRegressionModel; import org.apache.spark.mllib.regression.LinearRegressionWithSGD; import org.apache.spark.mllib.evaluation.RegressionMetrics; import org.apache.spark.SparkConf; public class LinearRegression { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Linear Regression Example"); JavaSparkContext sc = new JavaSparkContext(conf); // Load and parse the data String path = "data/mllib/sample_linear_regression_data.txt"; JavaRDD data = sc.textFile(path); JavaRDD parsedData = data.map( new Function() { public LabeledPoint call(String line) { String[] parts = line.split(" "); double[] v = new double[parts.length - 1]; for (int i = 1; i < parts.length - 1; i++) v[i - 1] = Double.parseDouble(parts[i].split(":")[1]); return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(v)); } } ); parsedData.cache(); // Building the model int numIterations = 100; final LinearRegressionModel model = LinearRegressionWithSGD.train(JavaRDD.toRDD(parsedData), numIterations); // Evaluate model on training examples and compute training error JavaRDD> valuesAndPreds = parsedData.map( new Function>() { public Tuple2 call(LabeledPoint point) { double prediction = model.predict(point.features()); return new Tuple2(prediction, point.label()); } } ); // Instantiate metrics object RegressionMetrics metrics = new RegressionMetrics(valuesAndPreds.rdd()); // Squared error System.out.format("MSE = %f\n", metrics.meanSquaredError()); System.out.format("RMSE = %f\n", metrics.rootMeanSquaredError()); // R-squared System.out.format("R Squared = %f\n", metrics.r2()); // Mean absolute error System.out.format("MAE = %f\n", metrics.meanAbsoluteError()); // Explained variance System.out.format("Explained Variance = %f\n", metrics.explainedVariance()); // Save and load model model.save(sc.sc(), "myModelPath"); LinearRegressionModel sameModel = LinearRegressionModel.load(sc.sc(), "myModelPath"); } } {% endhighlight %}
Refer to the [`RegressionMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RegressionMetrics) for more details on the API. {% highlight python %} from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD from pyspark.mllib.evaluation import RegressionMetrics from pyspark.mllib.linalg import DenseVector # Load and parse the data def parsePoint(line): values = line.split() return LabeledPoint(float(values[0]), DenseVector([float(x.split(':')[1]) for x in values[1:]])) data = sc.textFile("data/mllib/sample_linear_regression_data.txt") parsedData = data.map(parsePoint) # Build the model model = LinearRegressionWithSGD.train(parsedData) # Get predictions valuesAndPreds = parsedData.map(lambda p: (float(model.predict(p.features)), p.label)) # Instantiate metrics object metrics = RegressionMetrics(valuesAndPreds) # Squared Error print("MSE = %s" % metrics.meanSquaredError) print("RMSE = %s" % metrics.rootMeanSquaredError) # R-squared print("R-squared = %s" % metrics.r2) # Mean absolute error print("MAE = %s" % metrics.meanAbsoluteError) # Explained variance print("Explained variance = %s" % metrics.explainedVariance) {% endhighlight %}