--- layout: global title: Frequent Pattern Mining - MLlib displayTitle: MLlib - Frequent Pattern Mining --- Mining frequent items, itemsets, subsequences, or other substructures is usually among the first steps to analyze a large-scale dataset, which has been an active research topic in data mining for years. We refer users to Wikipedia's [association rule learning](http://en.wikipedia.org/wiki/Association_rule_learning) for more information. MLlib provides a parallel implementation of FP-growth, a popular algorithm to mining frequent itemsets. ## FP-growth The FP-growth algorithm is described in the paper [Han et al., Mining frequent patterns without candidate generation](http://dx.doi.org/10.1145/335191.335372), where "FP" stands for frequent pattern. Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items. Different from [Apriori-like](http://en.wikipedia.org/wiki/Apriori_algorithm) algorithms designed for the same purpose, the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets explicitly, which are usually expensive to generate. After the second step, the frequent itemsets can be extracted from the FP-tree. In MLlib, we implemented a parallel version of FP-growth called PFP, as described in [Li et al., PFP: Parallel FP-growth for query recommendation](http://dx.doi.org/10.1145/1454008.1454027). PFP distributes the work of growing FP-trees based on the suffices of transactions, and hence more scalable than a single-machine implementation. We refer users to the papers for more details. MLlib's FP-growth implementation takes the following (hyper-)parameters: * `minSupport`: the minimum support for an itemset to be identified as frequent. For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6. * `numPartitions`: the number of partitions used to distribute the work. **Examples**
[`FPGrowth`](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth) implements the FP-growth algorithm. It take a `RDD` of transactions, where each transaction is an `Array` of items of a generic type. Calling `FPGrowth.run` with transactions returns an [`FPGrowthModel`](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowthModel) that stores the frequent itemsets with their frequencies. The following example illustrates how to mine frequent itemsets and association rules (see [Association Rules](mllib-frequent-pattern-mining.html#association-rules) for details) from `transactions`. Refer to the [`FPGrowth` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth) for details on the API. {% highlight scala %} import org.apache.spark.rdd.RDD import org.apache.spark.mllib.fpm.FPGrowth val data = sc.textFile("data/mllib/sample_fpgrowth.txt") val transactions: RDD[Array[String]] = data.map(s => s.trim.split(' ')) val fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10) val model = fpg.run(transactions) model.freqItemsets.collect().foreach { itemset => println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq) } val minConfidence = 0.8 model.generateAssociationRules(minConfidence).collect().foreach { rule => println( rule.antecedent.mkString("[", ",", "]") + " => " + rule.consequent .mkString("[", ",", "]") + ", " + rule.confidence) } {% endhighlight %}
[`FPGrowth`](api/java/org/apache/spark/mllib/fpm/FPGrowth.html) implements the FP-growth algorithm. It take an `JavaRDD` of transactions, where each transaction is an `Iterable` of items of a generic type. Calling `FPGrowth.run` with transactions returns an [`FPGrowthModel`](api/java/org/apache/spark/mllib/fpm/FPGrowthModel.html) that stores the frequent itemsets with their frequencies. The following example illustrates how to mine frequent itemsets and association rules (see [Association Rules](mllib-frequent-pattern-mining.html#association-rules) for details) from `transactions`. Refer to the [`FPGrowth` Java docs](api/java/org/apache/spark/mllib/fpm/FPGrowth.html) for details on the API. {% highlight java %} import java.util.Arrays; import java.util.List; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel; SparkConf conf = new SparkConf().setAppName("FP-growth Example"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD data = sc.textFile("data/mllib/sample_fpgrowth.txt"); JavaRDD> transactions = data.map( new Function>() { public List call(String line) { String[] parts = line.split(" "); return Arrays.asList(parts); } } ); FPGrowth fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10); FPGrowthModel model = fpg.run(transactions); for (FPGrowth.FreqItemset itemset: model.freqItemsets().toJavaRDD().collect()) { System.out.println("[" + itemset.javaItems() + "], " + itemset.freq()); } double minConfidence = 0.8; for (AssociationRules.Rule rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) { System.out.println( rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence()); } {% endhighlight %}
[`FPGrowth`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) implements the FP-growth algorithm. It take an `RDD` of transactions, where each transaction is an `List` of items of a generic type. Calling `FPGrowth.train` with transactions returns an [`FPGrowthModel`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowthModel) that stores the frequent itemsets with their frequencies. Refer to the [`FPGrowth` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) for more details on the API. {% highlight python %} from pyspark.mllib.fpm import FPGrowth data = sc.textFile("data/mllib/sample_fpgrowth.txt") transactions = data.map(lambda line: line.strip().split(' ')) model = FPGrowth.train(transactions, minSupport=0.2, numPartitions=10) result = model.freqItemsets().collect() for fi in result: print(fi) {% endhighlight %}
## Association Rules
[AssociationRules](api/scala/index.html#org.apache.spark.mllib.fpm.AssociationRules) implements a parallel rule generation algorithm for constructing rules that have a single item as the consequent. Refer to the [`AssociationRules` Scala docs](api/java/org/apache/spark/mllib/fpm/AssociationRules.html) for details on the API. {% highlight scala %} import org.apache.spark.rdd.RDD import org.apache.spark.mllib.fpm.AssociationRules import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset val freqItemsets = sc.parallelize(Seq( new FreqItemset(Array("a"), 15L), new FreqItemset(Array("b"), 35L), new FreqItemset(Array("a", "b"), 12L) )); val ar = new AssociationRules() .setMinConfidence(0.8) val results = ar.run(freqItemsets) results.collect().foreach { rule => println("[" + rule.antecedent.mkString(",") + "=>" + rule.consequent.mkString(",") + "]," + rule.confidence) } {% endhighlight %}
[AssociationRules](api/java/org/apache/spark/mllib/fpm/AssociationRules.html) implements a parallel rule generation algorithm for constructing rules that have a single item as the consequent. Refer to the [`AssociationRules` Java docs](api/java/org/apache/spark/mllib/fpm/AssociationRules.html) for details on the API. {% highlight java %} import java.util.Arrays; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset; JavaRDD> freqItemsets = sc.parallelize(Arrays.asList( new FreqItemset(new String[] {"a"}, 15L), new FreqItemset(new String[] {"b"}, 35L), new FreqItemset(new String[] {"a", "b"}, 12L) )); AssociationRules arules = new AssociationRules() .setMinConfidence(0.8); JavaRDD> results = arules.run(freqItemsets); for (AssociationRules.Rule rule: results.collect()) { System.out.println( rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence()); } {% endhighlight %}
## PrefixSpan PrefixSpan is a sequential pattern mining algorithm described in [Pei et al., Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach](http://dx.doi.org/10.1109%2FTKDE.2004.77). We refer the reader to the referenced paper for formalizing the sequential pattern mining problem. MLlib's PrefixSpan implementation takes the following parameters: * `minSupport`: the minimum support required to be considered a frequent sequential pattern. * `maxPatternLength`: the maximum length of a frequent sequential pattern. Any frequent pattern exceeding this length will not be included in the results. * `maxLocalProjDBSize`: the maximum number of items allowed in a prefix-projected database before local iterative processing of the projected databse begins. This parameter should be tuned with respect to the size of your executors. **Examples** The following example illustrates PrefixSpan running on the sequences (using same notation as Pei et al): ~~~ <(12)3> <1(32)(12)> <(12)5> <6> ~~~
[`PrefixSpan`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) implements the PrefixSpan algorithm. Calling `PrefixSpan.run` returns a [`PrefixSpanModel`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel) that stores the frequent sequences with their frequencies. Refer to the [`PrefixSpan` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) and [`PrefixSpanModel` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel) for details on the API. {% highlight scala %} import org.apache.spark.mllib.fpm.PrefixSpan val sequences = sc.parallelize(Seq( Array(Array(1, 2), Array(3)), Array(Array(1), Array(3, 2), Array(1, 2)), Array(Array(1, 2), Array(5)), Array(Array(6)) ), 2).cache() val prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5) val model = prefixSpan.run(sequences) model.freqSequences.collect().foreach { freqSequence => println( freqSequence.sequence.map(_.mkString("[", ", ", "]")).mkString("[", ", ", "]") + ", " + freqSequence.freq) } {% endhighlight %}
[`PrefixSpan`](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) implements the PrefixSpan algorithm. Calling `PrefixSpan.run` returns a [`PrefixSpanModel`](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html) that stores the frequent sequences with their frequencies. Refer to the [`PrefixSpan` Java docs](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) and [`PrefixSpanModel` Java docs](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html) for details on the API. {% highlight java %} import java.util.Arrays; import java.util.List; import org.apache.spark.mllib.fpm.PrefixSpan; import org.apache.spark.mllib.fpm.PrefixSpanModel; JavaRDD>> sequences = sc.parallelize(Arrays.asList( Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)), Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)), Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)), Arrays.asList(Arrays.asList(6)) ), 2); PrefixSpan prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5); PrefixSpanModel model = prefixSpan.run(sequences); for (PrefixSpan.FreqSequence freqSeq: model.freqSequences().toJavaRDD().collect()) { System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq()); } {% endhighlight %}