--- layout: global title: Naive Bayes - MLlib displayTitle: MLlib - Naive Bayes --- [Naive Bayes](http://en.wikipedia.org/wiki/Naive_Bayes_classifier) is a simple multiclass classification algorithm with the assumption of independence between every pair of features. Naive Bayes can be trained very efficiently. Within a single pass to the training data, it computes the conditional probability distribution of each feature given label, and then it applies Bayes' theorem to compute the conditional probability distribution of label given an observation and use it for prediction. MLlib supports [multinomial naive Bayes](http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Multinomial_naive_Bayes) and [Bernoulli naive Bayes] (http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html). These models are typically used for [document classification] (http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html). Within that context, each observation is a document and each feature represents a term whose value is the frequency of the term (in multinomial naive Bayes) or a zero or one indicating whether the term was found in the document (in Bernoulli naive Bayes). Feature values must be nonnegative. The model type is selected with an optional parameter "Multinomial" or "Bernoulli" with "Multinomial" as the default. [Additive smoothing](http://en.wikipedia.org/wiki/Lidstone_smoothing) can be used by setting the parameter $\lambda$ (default to $1.0$). For document classification, the input feature vectors are usually sparse, and sparse vectors should be supplied as input to take advantage of sparsity. Since the training data is only used once, it is not necessary to cache it. ## Examples
[NaiveBayes](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements multinomial naive Bayes. It takes an RDD of [LabeledPoint](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an optional smoothing parameter `lambda` as input, an optional model type parameter (default is Multinomial), and outputs a [NaiveBayesModel](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which can be used for evaluation and prediction. {% highlight scala %} import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel} import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint val data = sc.textFile("data/mllib/sample_naive_bayes_data.txt") val parsedData = data.map { line => val parts = line.split(',') LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble))) } // Split data into training (60%) and test (40%). val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L) val training = splits(0) val test = splits(1) val model = NaiveBayes.train(training, lambda = 1.0, model = "Multinomial") val predictionAndLabel = test.map(p => (model.predict(p.features), p.label)) val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test.count() // Save and load model model.save(sc, "myModelPath") val sameModel = NaiveBayesModel.load(sc, "myModelPath") {% endhighlight %}
[NaiveBayes](api/java/org/apache/spark/mllib/classification/NaiveBayes.html) implements multinomial naive Bayes. It takes a Scala RDD of [LabeledPoint](api/java/org/apache/spark/mllib/regression/LabeledPoint.html) and an optionally smoothing parameter `lambda` as input, and output a [NaiveBayesModel](api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html), which can be used for evaluation and prediction. {% highlight java %} import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.mllib.classification.NaiveBayes; import org.apache.spark.mllib.classification.NaiveBayesModel; import org.apache.spark.mllib.regression.LabeledPoint; import scala.Tuple2; JavaRDD training = ... // training set JavaRDD test = ... // test set final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0); JavaPairRDD predictionAndLabel = test.mapToPair(new PairFunction() { @Override public Tuple2 call(LabeledPoint p) { return new Tuple2(model.predict(p.features()), p.label()); } }); double accuracy = predictionAndLabel.filter(new Function, Boolean>() { @Override public Boolean call(Tuple2 pl) { return pl._1().equals(pl._2()); } }).count() / (double) test.count(); // Save and load model model.save(sc.sc(), "myModelPath"); NaiveBayesModel sameModel = NaiveBayesModel.load(sc.sc(), "myModelPath"); {% endhighlight %}
[NaiveBayes](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayes) implements multinomial naive Bayes. It takes an RDD of [LabeledPoint](api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint) and an optionally smoothing parameter `lambda` as input, and output a [NaiveBayesModel](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayesModel), which can be used for evaluation and prediction. Note that the Python API does not yet support model save/load but will in the future. {% highlight python %} from pyspark.mllib.classification import NaiveBayes from pyspark.mllib.linalg import Vectors from pyspark.mllib.regression import LabeledPoint def parseLine(line): parts = line.split(',') label = float(parts[0]) features = Vectors.dense([float(x) for x in parts[1].split(' ')]) return LabeledPoint(label, features) data = sc.textFile('data/mllib/sample_naive_bayes_data.txt').map(parseLine) # Split data aproximately into training (60%) and test (40%) training, test = data.randomSplit([0.6, 0.4], seed = 0) # Train a naive Bayes model. model = NaiveBayes.train(training, 1.0) # Make prediction and test accuracy. predictionAndLabel = test.map(lambda p : (model.predict(p.features), p.label)) accuracy = 1.0 * predictionAndLabel.filter(lambda (x, v): x == v).count() / test.count() {% endhighlight %}