# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import pprint import sys from pyspark.ml.classification import LogisticRegression from pyspark.ml.linalg import DenseVector from pyspark.sql import Row, SparkSession """ A simple example demonstrating ways to specify parameters for Estimators and Transformers. Run with: bin/spark-submit examples/src/main/python/ml/simple_params_example.py """ if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("SimpleTextClassificationPipeline") \ .getOrCreate() # prepare training data. # We create an RDD of LabeledPoints and convert them into a DataFrame. # A LabeledPoint is an Object with two fields named label and features # and Spark SQL identifies these fields and creates the schema appropriately. training = spark.createDataFrame([ Row(label=1.0, features=DenseVector([0.0, 1.1, 0.1])), Row(label=0.0, features=DenseVector([2.0, 1.0, -1.0])), Row(label=0.0, features=DenseVector([2.0, 1.3, 1.0])), Row(label=1.0, features=DenseVector([0.0, 1.2, -0.5]))]) # Create a LogisticRegression instance with maxIter = 10. # This instance is an Estimator. lr = LogisticRegression(maxIter=10) # Print out the parameters, documentation, and any default values. print("LogisticRegression parameters:\n" + lr.explainParams() + "\n") # We may also set parameters using setter methods. lr.setRegParam(0.01) # Learn a LogisticRegression model. This uses the parameters stored in lr. model1 = lr.fit(training) # Since model1 is a Model (i.e., a Transformer produced by an Estimator), # we can view the parameters it used during fit(). # This prints the parameter (name: value) pairs, where names are unique IDs for this # LogisticRegression instance. print("Model 1 was fit using parameters:\n") pprint.pprint(model1.extractParamMap()) # We may alternatively specify parameters using a parameter map. # paramMap overrides all lr parameters set earlier. paramMap = {lr.maxIter: 20, lr.thresholds: [0.5, 0.5], lr.probabilityCol: "myProbability"} # Now learn a new model using the new parameters. model2 = lr.fit(training, paramMap) print("Model 2 was fit using parameters:\n") pprint.pprint(model2.extractParamMap()) # prepare test data. test = spark.createDataFrame([ Row(label=1.0, features=DenseVector([-1.0, 1.5, 1.3])), Row(label=0.0, features=DenseVector([3.0, 2.0, -0.1])), Row(label=0.0, features=DenseVector([0.0, 2.2, -1.5]))]) # Make predictions on test data using the Transformer.transform() method. # LogisticRegressionModel.transform will only use the 'features' column. # Note that model2.transform() outputs a 'myProbability' column instead of the usual # 'probability' column since we renamed the lr.probabilityCol parameter previously. result = model2.transform(test) \ .select("features", "label", "myProbability", "prediction") \ .collect() for row in result: print("features=%s,label=%s -> prob=%s, prediction=%s" % (row.features, row.label, row.myProbability, row.prediction)) spark.stop()