# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from numpy import array, dot from math import sqrt from pyspark import SparkContext from pyspark.mllib._common import \ _get_unmangled_rdd, _get_unmangled_double_vector_rdd, _squared_distance, \ _serialize_double_matrix, _deserialize_double_matrix, \ _serialize_double_vector, _deserialize_double_vector, \ _get_initial_weights, _serialize_rating, _regression_train_wrapper from pyspark.mllib.linalg import SparseVector class KMeansModel(object): """A clustering model derived from the k-means method. >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2) >>> model = KMeans.train( ... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random") >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) True >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) True >>> model = KMeans.train(sc.parallelize(data), 2) >>> sparse_data = [ ... SparseVector(3, {1: 1.0}), ... SparseVector(3, {1: 1.1}), ... SparseVector(3, {2: 1.0}), ... SparseVector(3, {2: 1.1}) ... ] >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||") >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) True >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) True >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) True >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) True >>> type(model.clusterCenters) """ def __init__(self, centers): self.centers = centers @property def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays.""" return self.centers def predict(self, x): """Find the cluster to which x belongs in this model.""" best = 0 best_distance = float("inf") for i in range(0, len(self.centers)): distance = _squared_distance(x, self.centers[i]) if distance < best_distance: best = i best_distance = distance return best class KMeans(object): @classmethod def train(cls, data, k, maxIterations=100, runs=1, initializationMode="k-means||"): """Train a k-means clustering model.""" sc = data.context dataBytes = _get_unmangled_double_vector_rdd(data) ans = sc._jvm.PythonMLLibAPI().trainKMeansModel( dataBytes._jrdd, k, maxIterations, runs, initializationMode) if len(ans) != 1: raise RuntimeError("JVM call result had unexpected length") elif type(ans[0]) != bytearray: raise RuntimeError("JVM call result had first element of type " + type(ans[0]) + " which is not bytearray") matrix = _deserialize_double_matrix(ans[0]) return KMeansModel([row for row in matrix]) def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()