# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ MLlib utilities for linear algebra. For dense vectors, MLlib uses the NumPy C{array} type, so you can simply pass NumPy arrays around. For sparse vectors, users can construct a L{SparseVector} object from MLlib or pass SciPy C{scipy.sparse} column vectors if SciPy is available in their environment. """ import sys import array import copy_reg import numpy as np from pyspark.serializers import AutoBatchedSerializer, PickleSerializer __all__ = ['Vector', 'DenseVector', 'SparseVector', 'Vectors'] if sys.version_info[:2] == (2, 7): # speed up pickling array in Python 2.7 def fast_pickle_array(ar): return array.array, (ar.typecode, ar.tostring()) copy_reg.pickle(array.array, fast_pickle_array) # Check whether we have SciPy. MLlib works without it too, but if we have it, some methods, # such as _dot and _serialize_double_vector, start to support scipy.sparse matrices. try: import scipy.sparse _have_scipy = True except: # No SciPy in environment, but that's okay _have_scipy = False # this will call the MLlib version of pythonToJava() def _to_java_object_rdd(rdd): """ Return an JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return rdd.ctx._jvm.SerDe.pythonToJava(rdd._jrdd, True) def _convert_to_vector(l): if isinstance(l, Vector): return l elif type(l) in (array.array, np.array, np.ndarray, list, tuple): return DenseVector(l) elif _have_scipy and scipy.sparse.issparse(l): assert l.shape[1] == 1, "Expected column vector" csc = l.tocsc() return SparseVector(l.shape[0], csc.indices, csc.data) else: raise TypeError("Cannot convert type %s into Vector" % type(l)) def _vector_size(v): """ Returns the size of the vector. >>> _vector_size([1., 2., 3.]) 3 >>> _vector_size((1., 2., 3.)) 3 >>> _vector_size(array.array('d', [1., 2., 3.])) 3 >>> _vector_size(np.zeros(3)) 3 >>> _vector_size(np.zeros((3, 1))) 3 >>> _vector_size(np.zeros((1, 3))) Traceback (most recent call last): ... ValueError: Cannot treat an ndarray of shape (1, 3) as a vector """ if isinstance(v, Vector): return len(v) elif type(v) in (array.array, list, tuple): return len(v) elif type(v) == np.ndarray: if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1): return len(v) else: raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape)) elif _have_scipy and scipy.sparse.issparse(v): assert v.shape[1] == 1, "Expected column vector" return v.shape[0] else: raise TypeError("Cannot treat type %s as a vector" % type(v)) class Vector(object): """ Abstract class for DenseVector and SparseVector """ def toArray(self): """ Convert the vector into an numpy.ndarray :return: numpy.ndarray """ raise NotImplementedError class DenseVector(Vector): """ A dense vector represented by a value array. """ def __init__(self, ar): if not isinstance(ar, array.array): ar = array.array('d', ar) self.array = ar def __reduce__(self): return DenseVector, (self.array,) def dot(self, other): """ Compute the dot product of two Vectors. We support (Numpy array, list, SparseVector, or SciPy sparse) and a target NumPy array that is either 1- or 2-dimensional. Equivalent to calling numpy.dot of the two vectors. >>> dense = DenseVector(array.array('d', [1., 2.])) >>> dense.dot(dense) 5.0 >>> dense.dot(SparseVector(2, [0, 1], [2., 1.])) 4.0 >>> dense.dot(range(1, 3)) 5.0 >>> dense.dot(np.array(range(1, 3))) 5.0 >>> dense.dot([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F')) array([ 5., 11.]) >>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F')) Traceback (most recent call last): ... AssertionError: dimension mismatch """ if type(other) == np.ndarray and other.ndim > 1: assert len(self) == other.shape[0], "dimension mismatch" return np.dot(self.toArray(), other) elif _have_scipy and scipy.sparse.issparse(other): assert len(self) == other.shape[0], "dimension mismatch" return other.transpose().dot(self.toArray()) else: assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, SparseVector): return other.dot(self) elif isinstance(other, Vector): return np.dot(self.toArray(), other.toArray()) else: return np.dot(self.toArray(), other) def squared_distance(self, other): """ Squared distance of two Vectors. >>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if isinstance(other, SparseVector): return other.squared_distance(self) elif _have_scipy and scipy.sparse.issparse(other): return _convert_to_vector(other).squared_distance(self) if isinstance(other, Vector): other = other.toArray() elif not isinstance(other, np.ndarray): other = np.array(other) diff = self.toArray() - other return np.dot(diff, diff) def toArray(self): return np.array(self.array) def __getitem__(self, item): return self.array[item] def __len__(self): return len(self.array) def __str__(self): return "[" + ",".join([str(v) for v in self.array]) + "]" def __repr__(self): return "DenseVector(%r)" % self.array def __eq__(self, other): return isinstance(other, DenseVector) and self.array == other.array def __ne__(self, other): return not self == other def __getattr__(self, item): return getattr(self.array, item) class SparseVector(Vector): """ A simple sparse vector class for passing data to MLlib. Users may alternatively pass SciPy's {scipy.sparse} data types. """ def __init__(self, size, *args): """ Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index). :param size: Size of the vector. :param args: Non-zero entries, as a dictionary, list of tupes, or two sorted lists containing indices and values. >>> print SparseVector(4, {1: 1.0, 3: 5.5}) (4,[1,3],[1.0,5.5]) >>> print SparseVector(4, [(1, 1.0), (3, 5.5)]) (4,[1,3],[1.0,5.5]) >>> print SparseVector(4, [1, 3], [1.0, 5.5]) (4,[1,3],[1.0,5.5]) """ self.size = int(size) assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments" if len(args) == 1: pairs = args[0] if type(pairs) == dict: pairs = pairs.items() pairs = sorted(pairs) self.indices = array.array('i', [p[0] for p in pairs]) self.values = array.array('d', [p[1] for p in pairs]) else: assert len(args[0]) == len(args[1]), "index and value arrays not same length" self.indices = array.array('i', args[0]) self.values = array.array('d', args[1]) for i in xrange(len(self.indices) - 1): if self.indices[i] >= self.indices[i + 1]: raise TypeError("indices array must be sorted") def __reduce__(self): return (SparseVector, (self.size, self.indices, self.values)) def dot(self, other): """ Dot product with a SparseVector or 1- or 2-dimensional Numpy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array.array('d', [1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2, 4], [1.0, 2.0]) >>> a.dot(b) 0.0 >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) >>> a.dot([1., 2., 3.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.array([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(DenseVector([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.zeros((3, 2))) Traceback (most recent call last): ... AssertionError: dimension mismatch """ if type(other) == np.ndarray: if other.ndim == 2: results = [self.dot(other[:, i]) for i in xrange(other.shape[1])] return np.array(results) elif other.ndim > 2: raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim) assert len(self) == _vector_size(other), "dimension mismatch" if type(other) in (np.ndarray, array.array, DenseVector): result = 0.0 for i in xrange(len(self.indices)): result += self.values[i] * other[self.indices[i]] return result elif type(other) is SparseVector: result = 0.0 i, j = 0, 0 while i < len(self.indices) and j < len(other.indices): if self.indices[i] == other.indices[j]: result += self.values[i] * other.values[j] i += 1 j += 1 elif self.indices[i] < other.indices[j]: i += 1 else: j += 1 return result else: return self.dot(_convert_to_vector(other)) def squared_distance(self, other): """ Squared distance from a SparseVector or 1-dimensional NumPy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 11.0 >>> a.squared_distance(np.array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2, 4], [1.0, 2.0]) >>> a.squared_distance(b) 30.0 >>> b.squared_distance(a) 30.0 >>> b.squared_distance([1., 2.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> b.squared_distance(SparseVector(3, [1,], [1.0,])) Traceback (most recent call last): ... AssertionError: dimension mismatch """ assert len(self) == _vector_size(other), "dimension mismatch" if type(other) in (list, array.array, DenseVector, np.array, np.ndarray): if type(other) is np.array and other.ndim != 1: raise Exception("Cannot call squared_distance with %d-dimensional array" % other.ndim) result = 0.0 j = 0 # index into our own array for i in xrange(len(other)): if j < len(self.indices) and self.indices[j] == i: diff = self.values[j] - other[i] result += diff * diff j += 1 else: result += other[i] * other[i] return result elif type(other) is SparseVector: result = 0.0 i, j = 0, 0 while i < len(self.indices) and j < len(other.indices): if self.indices[i] == other.indices[j]: diff = self.values[i] - other.values[j] result += diff * diff i += 1 j += 1 elif self.indices[i] < other.indices[j]: result += self.values[i] * self.values[i] i += 1 else: result += other.values[j] * other.values[j] j += 1 while i < len(self.indices): result += self.values[i] * self.values[i] i += 1 while j < len(other.indices): result += other.values[j] * other.values[j] j += 1 return result else: return self.squared_distance(_convert_to_vector(other)) def toArray(self): """ Returns a copy of this SparseVector as a 1-dimensional NumPy array. """ arr = np.zeros((self.size,), dtype=np.float64) for i in xrange(self.indices.size): arr[self.indices[i]] = self.values[i] return arr def __len__(self): return self.size def __str__(self): inds = "[" + ",".join([str(i) for i in self.indices]) + "]" vals = "[" + ",".join([str(v) for v in self.values]) + "]" return "(" + ",".join((str(self.size), inds, vals)) + ")" def __repr__(self): inds = self.indices vals = self.values entries = ", ".join(["{0}: {1}".format(inds[i], vals[i]) for i in xrange(len(inds))]) return "SparseVector({0}, {{{1}}})".format(self.size, entries) def __eq__(self, other): """ Test SparseVectors for equality. >>> v1 = SparseVector(4, [(1, 1.0), (3, 5.5)]) >>> v2 = SparseVector(4, [(1, 1.0), (3, 5.5)]) >>> v1 == v2 True >>> v1 != v2 False """ return (isinstance(other, self.__class__) and other.size == self.size and other.indices == self.indices and other.values == self.values) def __ne__(self, other): return not self.__eq__(other) class Vectors(object): """ Factory methods for working with vectors. Note that dense vectors are simply represented as NumPy array objects, so there is no need to covert them for use in MLlib. For sparse vectors, the factory methods in this class create an MLlib-compatible type, or users can pass in SciPy's C{scipy.sparse} column vectors. """ @staticmethod def sparse(size, *args): """ Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index). :param size: Size of the vector. :param args: Non-zero entries, as a dictionary, list of tupes, or two sorted lists containing indices and values. >>> print Vectors.sparse(4, {1: 1.0, 3: 5.5}) (4,[1,3],[1.0,5.5]) >>> print Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) (4,[1,3],[1.0,5.5]) >>> print Vectors.sparse(4, [1, 3], [1.0, 5.5]) (4,[1,3],[1.0,5.5]) """ return SparseVector(size, *args) @staticmethod def dense(elements): """ Create a dense vector of 64-bit floats from a Python list. Always returns a NumPy array. >>> Vectors.dense([1, 2, 3]) DenseVector(array('d', [1.0, 2.0, 3.0])) """ return DenseVector(elements) @staticmethod def stringify(vector): """ Converts a vector into a string, which can be recognized by Vectors.parse(). >>> Vectors.stringify(Vectors.sparse(2, [1], [1.0])) '(2,[1],[1.0])' >>> Vectors.stringify(Vectors.dense([0.0, 1.0])) '[0.0,1.0]' """ return str(vector) class Matrix(object): """ Represents a local matrix. """ def __init__(self, numRows, numCols): self.numRows = numRows self.numCols = numCols def toArray(self): """ Returns its elements in a NumPy ndarray. """ raise NotImplementedError class DenseMatrix(Matrix): """ Column-major dense matrix. """ def __init__(self, numRows, numCols, values): Matrix.__init__(self, numRows, numCols) assert len(values) == numRows * numCols self.values = values def __reduce__(self): return DenseMatrix, (self.numRows, self.numCols, self.values) def toArray(self): """ Return an numpy.ndarray >>> arr = array.array('d', [float(i) for i in range(4)]) >>> m = DenseMatrix(2, 2, arr) >>> m.toArray() array([[ 0., 2.], [ 1., 3.]]) """ return np.reshape(self.values, (self.numRows, self.numCols), order='F') def _test(): import doctest (failure_count, test_count) = doctest.testmod(optionflags=doctest.ELLIPSIS) if failure_count: exit(-1) if __name__ == "__main__": # remove current path from list of search paths to avoid importing mllib.random # for C{import random}, which is done in an external dependency of pyspark during doctests. import sys sys.path.pop(0) _test()