# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from base64 import standard_b64encode as b64enc import copy from collections import defaultdict from collections import namedtuple from itertools import chain, ifilter, imap import operator import os import sys import shlex import traceback from subprocess import Popen, PIPE from tempfile import NamedTemporaryFile from threading import Thread import warnings from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \ BatchedSerializer, CloudPickleSerializer, PairDeserializer, pack_long from pyspark.join import python_join, python_left_outer_join, \ python_right_outer_join, python_cogroup from pyspark.statcounter import StatCounter from pyspark.rddsampler import RDDSampler from py4j.java_collections import ListConverter, MapConverter __all__ = ["RDD"] def _extract_concise_traceback(): """ This function returns the traceback info for a callsite, returns a dict with function name, file name and line number """ tb = traceback.extract_stack() callsite = namedtuple("Callsite", "function file linenum") if len(tb) == 0: return None file, line, module, what = tb[len(tb) - 1] sparkpath = os.path.dirname(file) first_spark_frame = len(tb) - 1 for i in range(0, len(tb)): file, line, fun, what = tb[i] if file.startswith(sparkpath): first_spark_frame = i break if first_spark_frame == 0: file, line, fun, what = tb[0] return callsite(function=fun, file=file, linenum=line) sfile, sline, sfun, swhat = tb[first_spark_frame] ufile, uline, ufun, uwhat = tb[first_spark_frame-1] return callsite(function=sfun, file=ufile, linenum=uline) _spark_stack_depth = 0 class _JavaStackTrace(object): def __init__(self, sc): tb = _extract_concise_traceback() if tb is not None: self._traceback = "%s at %s:%s" % (tb.function, tb.file, tb.linenum) else: self._traceback = "Error! Could not extract traceback info" self._context = sc def __enter__(self): global _spark_stack_depth if _spark_stack_depth == 0: self._context._jsc.setCallSite(self._traceback) _spark_stack_depth += 1 def __exit__(self, type, value, tb): global _spark_stack_depth _spark_stack_depth -= 1 if _spark_stack_depth == 0: self._context._jsc.setCallSite(None) class RDD(object): """ A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. """ def __init__(self, jrdd, ctx, jrdd_deserializer): self._jrdd = jrdd self.is_cached = False self.is_checkpointed = False self.ctx = ctx self._jrdd_deserializer = jrdd_deserializer self._id = jrdd.id() def id(self): """ A unique ID for this RDD (within its SparkContext). """ return self._id def __repr__(self): return self._jrdd.toString() @property def context(self): """ The L{SparkContext} that this RDD was created on. """ return self.ctx def cache(self): """ Persist this RDD with the default storage level (C{MEMORY_ONLY}). """ self.is_cached = True self._jrdd.cache() return self def persist(self, storageLevel): """ Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. """ self.is_cached = True javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) self._jrdd.persist(javaStorageLevel) return self def unpersist(self): """ Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. """ self.is_cached = False self._jrdd.unpersist() return self def checkpoint(self): """ Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint directory set with L{SparkContext.setCheckpointDir()} and all references to its parent RDDs will be removed. This function must be called before any job has been executed on this RDD. It is strongly recommended that this RDD is persisted in memory, otherwise saving it on a file will require recomputation. """ self.is_checkpointed = True self._jrdd.rdd().checkpoint() def isCheckpointed(self): """ Return whether this RDD has been checkpointed or not """ return self._jrdd.rdd().isCheckpointed() def getCheckpointFile(self): """ Gets the name of the file to which this RDD was checkpointed """ checkpointFile = self._jrdd.rdd().getCheckpointFile() if checkpointFile.isDefined(): return checkpointFile.get() else: return None def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. """ def func(split, iterator): return imap(f, iterator) return PipelinedRDD(self, func, preservesPartitioning) def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(imap(f, iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitions(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ def func(s, iterator): return f(iterator) return self.mapPartitionsWithIndex(func) def mapPartitionsWithIndex(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithIndex(f).sum() 6 """ return PipelinedRDD(self, f, preservesPartitioning) def mapPartitionsWithSplit(self, f, preservesPartitioning=False): """ Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6 """ warnings.warn("mapPartitionsWithSplit is deprecated; " "use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2) return self.mapPartitionsWithIndex(f, preservesPartitioning) def filter(self, f): """ Return a new RDD containing only the elements that satisfy a predicate. >>> rdd = sc.parallelize([1, 2, 3, 4, 5]) >>> rdd.filter(lambda x: x % 2 == 0).collect() [2, 4] """ def func(iterator): return ifilter(f, iterator) return self.mapPartitions(func) def distinct(self): """ Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3] """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x) \ .map(lambda (x, _): x) def sample(self, withReplacement, fraction, seed): """ Return a sampled subset of this RDD (relies on numpy and falls back on default random generator if numpy is unavailable). >>> sc.parallelize(range(0, 100)).sample(False, 0.1, 2).collect() #doctest: +SKIP [2, 3, 20, 21, 24, 41, 42, 66, 67, 89, 90, 98] """ return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True) # this is ported from scala/spark/RDD.scala def takeSample(self, withReplacement, num, seed): """ Return a fixed-size sampled subset of this RDD (currently requires numpy). >>> sc.parallelize(range(0, 10)).takeSample(True, 10, 1) #doctest: +SKIP [4, 2, 1, 8, 2, 7, 0, 4, 1, 4] """ fraction = 0.0 total = 0 multiplier = 3.0 initialCount = self.count() maxSelected = 0 if (num < 0): raise ValueError if initialCount > sys.maxint - 1: maxSelected = sys.maxint - 1 else: maxSelected = initialCount if num > initialCount and not withReplacement: total = maxSelected fraction = multiplier * (maxSelected + 1) / initialCount else: fraction = multiplier * (num + 1) / initialCount total = num samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < total: if seed > sys.maxint - 2: seed = -1 seed += 1 samples = self.sample(withReplacement, fraction, seed).collect() sampler = RDDSampler(withReplacement, fraction, seed+1) sampler.shuffle(samples) return samples[0:total] def union(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> rdd.union(rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if self._jrdd_deserializer == other._jrdd_deserializer: rdd = RDD(self._jrdd.union(other._jrdd), self.ctx, self._jrdd_deserializer) return rdd else: # These RDDs contain data in different serialized formats, so we # must normalize them to the default serializer. self_copy = self._reserialize() other_copy = other._reserialize() return RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx, self.ctx.serializer) def intersection(self, other): """ Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did. Note that this method performs a shuffle internally. >>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5]) >>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8]) >>> rdd1.intersection(rdd2).collect() [1, 2, 3] """ return self.map(lambda v: (v, None)) \ .cogroup(other.map(lambda v: (v, None))) \ .filter(lambda x: (len(x[1][0]) != 0) and (len(x[1][1]) != 0)) \ .keys() def _reserialize(self): if self._jrdd_deserializer == self.ctx.serializer: return self else: return self.map(lambda x: x, preservesPartitioning=True) def __add__(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> (rdd + rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if not isinstance(other, RDD): raise TypeError return self.union(other) def sortByKey(self, ascending=True, numPartitions=None, keyfunc = lambda x: x): """ Sorts this RDD, which is assumed to consist of (key, value) pairs. >>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] >>> sc.parallelize(tmp).sortByKey(True, 2).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)] >>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)]) >>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect() [('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5), ('little', 4), ('Mary', 1), ('was', 8), ('white', 9), ('whose', 6)] """ if numPartitions is None: numPartitions = self.ctx.defaultParallelism bounds = list() # first compute the boundary of each part via sampling: we want to partition # the key-space into bins such that the bins have roughly the same # number of (key, value) pairs falling into them if numPartitions > 1: rddSize = self.count() maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner fraction = min(maxSampleSize / max(rddSize, 1), 1.0) samples = self.sample(False, fraction, 1).map(lambda (k, v): k).collect() samples = sorted(samples, reverse=(not ascending), key=keyfunc) # we have numPartitions many parts but one of the them has # an implicit boundary for i in range(0, numPartitions - 1): index = (len(samples) - 1) * (i + 1) / numPartitions bounds.append(samples[index]) def rangePartitionFunc(k): p = 0 while p < len(bounds) and keyfunc(k) > bounds[p]: p += 1 if ascending: return p else: return numPartitions-1-p def mapFunc(iterator): yield sorted(iterator, reverse=(not ascending), key=lambda (k, v): keyfunc(k)) return (self.partitionBy(numPartitions, partitionFunc=rangePartitionFunc) .mapPartitions(mapFunc,preservesPartitioning=True) .flatMap(lambda x: x, preservesPartitioning=True)) def glom(self): """ Return an RDD created by coalescing all elements within each partition into a list. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> sorted(rdd.glom().collect()) [[1, 2], [3, 4]] """ def func(iterator): yield list(iterator) return self.mapPartitions(func) def cartesian(self, other): """ Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and C{b} is in C{other}. >>> rdd = sc.parallelize([1, 2]) >>> sorted(rdd.cartesian(rdd).collect()) [(1, 1), (1, 2), (2, 1), (2, 2)] """ # Due to batching, we can't use the Java cartesian method. deserializer = CartesianDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer) def groupBy(self, f, numPartitions=None): """ Return an RDD of grouped items. >>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8]) >>> result = rdd.groupBy(lambda x: x % 2).collect() >>> sorted([(x, sorted(y)) for (x, y) in result]) [(0, [2, 8]), (1, [1, 1, 3, 5])] """ return self.map(lambda x: (f(x), x)).groupByKey(numPartitions) def pipe(self, command, env={}): """ Return an RDD created by piping elements to a forked external process. >>> sc.parallelize([1, 2, 3]).pipe('cat').collect() ['1', '2', '3'] """ def func(iterator): pipe = Popen(shlex.split(command), env=env, stdin=PIPE, stdout=PIPE) def pipe_objs(out): for obj in iterator: out.write(str(obj).rstrip('\n') + '\n') out.close() Thread(target=pipe_objs, args=[pipe.stdin]).start() return (x.rstrip('\n') for x in pipe.stdout) return self.mapPartitions(func) def foreach(self, f): """ Applies a function to all elements of this RDD. >>> def f(x): print x >>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f) """ def processPartition(iterator): for x in iterator: f(x) yield None self.mapPartitions(processPartition).collect() # Force evaluation def foreachPartition(self, f): """ Applies a function to each partition of this RDD. >>> def f(iterator): ... for x in iterator: ... print x ... yield None >>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) """ self.mapPartitions(f).collect() # Force evaluation def collect(self): """ Return a list that contains all of the elements in this RDD. """ with _JavaStackTrace(self.context) as st: bytesInJava = self._jrdd.collect().iterator() return list(self._collect_iterator_through_file(bytesInJava)) def _collect_iterator_through_file(self, iterator): # Transferring lots of data through Py4J can be slow because # socket.readline() is inefficient. Instead, we'll dump the data to a # file and read it back. tempFile = NamedTemporaryFile(delete=False, dir=self.ctx._temp_dir) tempFile.close() self.ctx._writeToFile(iterator, tempFile.name) # Read the data into Python and deserialize it: with open(tempFile.name, 'rb') as tempFile: for item in self._jrdd_deserializer.load_stream(tempFile): yield item os.unlink(tempFile.name) def reduce(self, f): """ Reduces the elements of this RDD using the specified commutative and associative binary operator. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add) 15 >>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add) 10 """ def func(iterator): acc = None for obj in iterator: if acc is None: acc = obj else: acc = f(obj, acc) if acc is not None: yield acc vals = self.mapPartitions(func).collect() return reduce(f, vals) def fold(self, zeroValue, op): """ Aggregate the elements of each partition, and then the results for all the partitions, using a given associative function and a neutral "zero value." The function C{op(t1, t2)} is allowed to modify C{t1} and return it as its result value to avoid object allocation; however, it should not modify C{t2}. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add) 15 """ def func(iterator): acc = zeroValue for obj in iterator: acc = op(obj, acc) yield acc vals = self.mapPartitions(func).collect() return reduce(op, vals, zeroValue) # TODO: aggregate def sum(self): """ Add up the elements in this RDD. >>> sc.parallelize([1.0, 2.0, 3.0]).sum() 6.0 """ return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add) def count(self): """ Return the number of elements in this RDD. >>> sc.parallelize([2, 3, 4]).count() 3 """ return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() def stats(self): """ Return a L{StatCounter} object that captures the mean, variance and count of the RDD's elements in one operation. """ def redFunc(left_counter, right_counter): return left_counter.mergeStats(right_counter) return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc) def mean(self): """ Compute the mean of this RDD's elements. >>> sc.parallelize([1, 2, 3]).mean() 2.0 """ return self.stats().mean() def variance(self): """ Compute the variance of this RDD's elements. >>> sc.parallelize([1, 2, 3]).variance() 0.666... """ return self.stats().variance() def stdev(self): """ Compute the standard deviation of this RDD's elements. >>> sc.parallelize([1, 2, 3]).stdev() 0.816... """ return self.stats().stdev() def sampleStdev(self): """ Compute the sample standard deviation of this RDD's elements (which corrects for bias in estimating the standard deviation by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleStdev() 1.0 """ return self.stats().sampleStdev() def sampleVariance(self): """ Compute the sample variance of this RDD's elements (which corrects for bias in estimating the variance by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleVariance() 1.0 """ return self.stats().sampleVariance() def countByValue(self): """ Return the count of each unique value in this RDD as a dictionary of (value, count) pairs. >>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items()) [(1, 2), (2, 3)] """ def countPartition(iterator): counts = defaultdict(int) for obj in iterator: counts[obj] += 1 yield counts def mergeMaps(m1, m2): for (k, v) in m2.iteritems(): m1[k] += v return m1 return self.mapPartitions(countPartition).reduce(mergeMaps) def take(self, num): """ Take the first num elements of the RDD. This currently scans the partitions *one by one*, so it will be slow if a lot of partitions are required. In that case, use L{collect} to get the whole RDD instead. >>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2) [2, 3] >>> sc.parallelize([2, 3, 4, 5, 6]).take(10) [2, 3, 4, 5, 6] """ def takeUpToNum(iterator): taken = 0 while taken < num: yield next(iterator) taken += 1 # Take only up to num elements from each partition we try mapped = self.mapPartitions(takeUpToNum) items = [] # TODO(shivaram): Similar to the scala implementation, update the take # method to scan multiple splits based on an estimate of how many elements # we have per-split. with _JavaStackTrace(self.context) as st: for partition in range(mapped._jrdd.splits().size()): partitionsToTake = self.ctx._gateway.new_array(self.ctx._jvm.int, 1) partitionsToTake[0] = partition iterator = mapped._jrdd.collectPartitions(partitionsToTake)[0].iterator() items.extend(mapped._collect_iterator_through_file(iterator)) if len(items) >= num: break return items[:num] def first(self): """ Return the first element in this RDD. >>> sc.parallelize([2, 3, 4]).first() 2 """ return self.take(1)[0] def saveAsTextFile(self, path): """ Save this RDD as a text file, using string representations of elements. >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(range(10)).saveAsTextFile(tempFile.name) >>> from fileinput import input >>> from glob import glob >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n' """ def func(split, iterator): for x in iterator: if not isinstance(x, basestring): x = unicode(x) yield x.encode("utf-8") keyed = PipelinedRDD(self, func) keyed._bypass_serializer = True keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) # Pair functions def collectAsMap(self): """ Return the key-value pairs in this RDD to the master as a dictionary. >>> m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap() >>> m[1] 2 >>> m[3] 4 """ return dict(self.collect()) def keys(self): """ Return an RDD with the keys of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).keys() >>> m.collect() [1, 3] """ return self.map(lambda (k, v): k) def values(self): """ Return an RDD with the values of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).values() >>> m.collect() [2, 4] """ return self.map(lambda (k, v): v) def reduceByKey(self, func, numPartitions=None): """ Merge the values for each key using an associative reduce function. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. Output will be hash-partitioned with C{numPartitions} partitions, or the default parallelism level if C{numPartitions} is not specified. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKey(add).collect()) [('a', 2), ('b', 1)] """ return self.combineByKey(lambda x: x, func, func, numPartitions) def reduceByKeyLocally(self, func): """ Merge the values for each key using an associative reduce function, but return the results immediately to the master as a dictionary. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKeyLocally(add).items()) [('a', 2), ('b', 1)] """ def reducePartition(iterator): m = {} for (k, v) in iterator: m[k] = v if k not in m else func(m[k], v) yield m def mergeMaps(m1, m2): for (k, v) in m2.iteritems(): m1[k] = v if k not in m1 else func(m1[k], v) return m1 return self.mapPartitions(reducePartition).reduce(mergeMaps) def countByKey(self): """ Count the number of elements for each key, and return the result to the master as a dictionary. >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.countByKey().items()) [('a', 2), ('b', 1)] """ return self.map(lambda x: x[0]).countByValue() def join(self, other, numPartitions=None): """ Return an RDD containing all pairs of elements with matching keys in C{self} and C{other}. Each pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in C{self} and (k, v2) is in C{other}. Performs a hash join across the cluster. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2), ("a", 3)]) >>> sorted(x.join(y).collect()) [('a', (1, 2)), ('a', (1, 3))] """ return python_join(self, other, numPartitions) def leftOuterJoin(self, other, numPartitions=None): """ Perform a left outer join of C{self} and C{other}. For each element (k, v) in C{self}, the resulting RDD will either contain all pairs (k, (v, w)) for w in C{other}, or the pair (k, (v, None)) if no elements in other have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(x.leftOuterJoin(y).collect()) [('a', (1, 2)), ('b', (4, None))] """ return python_left_outer_join(self, other, numPartitions) def rightOuterJoin(self, other, numPartitions=None): """ Perform a right outer join of C{self} and C{other}. For each element (k, w) in C{other}, the resulting RDD will either contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) if no elements in C{self} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(y.rightOuterJoin(x).collect()) [('a', (2, 1)), ('b', (None, 4))] """ return python_right_outer_join(self, other, numPartitions) # TODO: add option to control map-side combining def partitionBy(self, numPartitions, partitionFunc=hash): """ Return a copy of the RDD partitioned using the specified partitioner. >>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x)) >>> sets = pairs.partitionBy(2).glom().collect() >>> set(sets[0]).intersection(set(sets[1])) set([]) """ if numPartitions is None: numPartitions = self.ctx.defaultParallelism # Transferring O(n) objects to Java is too expensive. Instead, we'll # form the hash buckets in Python, transferring O(numPartitions) objects # to Java. Each object is a (splitNumber, [objects]) pair. outputSerializer = self.ctx._unbatched_serializer def add_shuffle_key(split, iterator): buckets = defaultdict(list) for (k, v) in iterator: buckets[partitionFunc(k) % numPartitions].append((k, v)) for (split, items) in buckets.iteritems(): yield pack_long(split) yield outputSerializer.dumps(items) keyed = PipelinedRDD(self, add_shuffle_key) keyed._bypass_serializer = True with _JavaStackTrace(self.context) as st: pairRDD = self.ctx._jvm.PairwiseRDD(keyed._jrdd.rdd()).asJavaPairRDD() partitioner = self.ctx._jvm.PythonPartitioner(numPartitions, id(partitionFunc)) jrdd = pairRDD.partitionBy(partitioner).values() rdd = RDD(jrdd, self.ctx, BatchedSerializer(outputSerializer)) # This is required so that id(partitionFunc) remains unique, even if # partitionFunc is a lambda: rdd._partitionFunc = partitionFunc return rdd # TODO: add control over map-side aggregation def combineByKey(self, createCombiner, mergeValue, mergeCombiners, numPartitions=None): """ Generic function to combine the elements for each key using a custom set of aggregation functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C. Note that V and C can be different -- for example, one might group an RDD of type (Int, Int) into an RDD of type (Int, List[Int]). Users provide three functions: - C{createCombiner}, which turns a V into a C (e.g., creates a one-element list) - C{mergeValue}, to merge a V into a C (e.g., adds it to the end of a list) - C{mergeCombiners}, to combine two C's into a single one. In addition, users can control the partitioning of the output RDD. >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> def f(x): return x >>> def add(a, b): return a + str(b) >>> sorted(x.combineByKey(str, add, add).collect()) [('a', '11'), ('b', '1')] """ if numPartitions is None: numPartitions = self.ctx.defaultParallelism def combineLocally(iterator): combiners = {} for x in iterator: (k, v) = x if k not in combiners: combiners[k] = createCombiner(v) else: combiners[k] = mergeValue(combiners[k], v) return combiners.iteritems() locally_combined = self.mapPartitions(combineLocally) shuffled = locally_combined.partitionBy(numPartitions) def _mergeCombiners(iterator): combiners = {} for (k, v) in iterator: if not k in combiners: combiners[k] = v else: combiners[k] = mergeCombiners(combiners[k], v) return combiners.iteritems() return shuffled.mapPartitions(_mergeCombiners) # TODO: support variant with custom partitioner def groupByKey(self, numPartitions=None): """ Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with into numPartitions partitions. >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(x.groupByKey().collect()) [('a', [1, 1]), ('b', [1])] """ def createCombiner(x): return [x] def mergeValue(xs, x): xs.append(x) return xs def mergeCombiners(a, b): return a + b return self.combineByKey(createCombiner, mergeValue, mergeCombiners, numPartitions) # TODO: add tests def flatMapValues(self, f): """ Pass each value in the key-value pair RDD through a flatMap function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])]) >>> def f(x): return x >>> x.flatMapValues(f).collect() [('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')] """ flat_map_fn = lambda (k, v): ((k, x) for x in f(v)) return self.flatMap(flat_map_fn, preservesPartitioning=True) def mapValues(self, f): """ Pass each value in the key-value pair RDD through a map function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])]) >>> def f(x): return len(x) >>> x.mapValues(f).collect() [('a', 3), ('b', 1)] """ map_values_fn = lambda (k, v): (k, f(v)) return self.map(map_values_fn, preservesPartitioning=True) # TODO: support varargs cogroup of several RDDs. def groupWith(self, other): """ Alias for cogroup. """ return self.cogroup(other) # TODO: add variant with custom parittioner def cogroup(self, other, numPartitions=None): """ For each key k in C{self} or C{other}, return a resulting RDD that contains a tuple with the list of values for that key in C{self} as well as C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(x.cogroup(y).collect()) [('a', ([1], [2])), ('b', ([4], []))] """ return python_cogroup(self, other, numPartitions) def subtractByKey(self, other, numPartitions=None): """ Return each (key, value) pair in C{self} that has no pair with matching key in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtractByKey(y).collect()) [('b', 4), ('b', 5)] """ filter_func = lambda (key, vals): len(vals[0]) > 0 and len(vals[1]) == 0 map_func = lambda (key, vals): [(key, val) for val in vals[0]] return self.cogroup(other, numPartitions).filter(filter_func).flatMap(map_func) def subtract(self, other, numPartitions=None): """ Return each value in C{self} that is not contained in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtract(y).collect()) [('a', 1), ('b', 4), ('b', 5)] """ rdd = other.map(lambda x: (x, True)) # note: here 'True' is just a placeholder return self.map(lambda x: (x, True)).subtractByKey(rdd).map(lambda tpl: tpl[0]) # note: here 'True' is just a placeholder def keyBy(self, f): """ Creates tuples of the elements in this RDD by applying C{f}. >>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) >>> y = sc.parallelize(zip(range(0,5), range(0,5))) >>> sorted(x.cogroup(y).collect()) [(0, ([0], [0])), (1, ([1], [1])), (2, ([], [2])), (3, ([], [3])), (4, ([2], [4]))] """ return self.map(lambda x: (f(x), x)) def repartition(self, numPartitions): """ Return a new RDD that has exactly numPartitions partitions. Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data. If you are decreasing the number of partitions in this RDD, consider using `coalesce`, which can avoid performing a shuffle. >>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4) >>> sorted(rdd.glom().collect()) [[1], [2, 3], [4, 5], [6, 7]] >>> len(rdd.repartition(2).glom().collect()) 2 >>> len(rdd.repartition(10).glom().collect()) 10 """ jrdd = self._jrdd.repartition(numPartitions) return RDD(jrdd, self.ctx, self._jrdd_deserializer) def coalesce(self, numPartitions, shuffle=False): """ Return a new RDD that is reduced into `numPartitions` partitions. >>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect() [[1], [2, 3], [4, 5]] >>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() [[1, 2, 3, 4, 5]] """ jrdd = self._jrdd.coalesce(numPartitions) return RDD(jrdd, self.ctx, self._jrdd_deserializer) def zip(self, other): """ Zips this RDD with another one, returning key-value pairs with the first element in each RDD second element in each RDD, etc. Assumes that the two RDDs have the same number of partitions and the same number of elements in each partition (e.g. one was made through a map on the other). >>> x = sc.parallelize(range(0,5)) >>> y = sc.parallelize(range(1000, 1005)) >>> x.zip(y).collect() [(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)] """ pairRDD = self._jrdd.zip(other._jrdd) deserializer = PairDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(pairRDD, self.ctx, deserializer) # TODO: `lookup` is disabled because we can't make direct comparisons based # on the key; we need to compare the hash of the key to the hash of the # keys in the pairs. This could be an expensive operation, since those # hashes aren't retained. class PipelinedRDD(RDD): """ Pipelined maps: >>> rdd = sc.parallelize([1, 2, 3, 4]) >>> rdd.map(lambda x: 2 * x).cache().map(lambda x: 2 * x).collect() [4, 8, 12, 16] >>> rdd.map(lambda x: 2 * x).map(lambda x: 2 * x).collect() [4, 8, 12, 16] Pipelined reduces: >>> from operator import add >>> rdd.map(lambda x: 2 * x).reduce(add) 20 >>> rdd.flatMap(lambda x: [x, x]).reduce(add) 20 """ def __init__(self, prev, func, preservesPartitioning=False): if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable(): # This transformation is the first in its stage: self.func = func self.preservesPartitioning = preservesPartitioning self._prev_jrdd = prev._jrdd self._prev_jrdd_deserializer = prev._jrdd_deserializer else: prev_func = prev.func def pipeline_func(split, iterator): return func(split, prev_func(split, iterator)) self.func = pipeline_func self.preservesPartitioning = \ prev.preservesPartitioning and preservesPartitioning self._prev_jrdd = prev._prev_jrdd # maintain the pipeline self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer self.is_cached = False self.is_checkpointed = False self.ctx = prev.ctx self.prev = prev self._jrdd_val = None self._jrdd_deserializer = self.ctx.serializer self._bypass_serializer = False @property def _jrdd(self): if self._jrdd_val: return self._jrdd_val if self._bypass_serializer: serializer = NoOpSerializer() else: serializer = self.ctx.serializer command = (self.func, self._prev_jrdd_deserializer, serializer) pickled_command = CloudPickleSerializer().dumps(command) broadcast_vars = ListConverter().convert( [x._jbroadcast for x in self.ctx._pickled_broadcast_vars], self.ctx._gateway._gateway_client) self.ctx._pickled_broadcast_vars.clear() class_tag = self._prev_jrdd.classTag() env = MapConverter().convert(self.ctx.environment, self.ctx._gateway._gateway_client) includes = ListConverter().convert(self.ctx._python_includes, self.ctx._gateway._gateway_client) python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), bytearray(pickled_command), env, includes, self.preservesPartitioning, self.ctx.pythonExec, broadcast_vars, self.ctx._javaAccumulator, class_tag) self._jrdd_val = python_rdd.asJavaRDD() return self._jrdd_val def _is_pipelinable(self): return not (self.is_cached or self.is_checkpointed) def _test(): import doctest from pyspark.context import SparkContext globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) (failure_count, test_count) = doctest.testmod(globs=globs,optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()