# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import platform import shutil import warnings import gc import itertools import operator import random import pyspark.heapq3 as heapq from pyspark.serializers import BatchedSerializer, PickleSerializer, FlattenedValuesSerializer, \ CompressedSerializer, AutoBatchedSerializer try: import psutil process = None def get_used_memory(): """ Return the used memory in MB """ global process if process is None or process._pid != os.getpid(): process = psutil.Process(os.getpid()) if hasattr(process, "memory_info"): info = process.memory_info() else: info = process.get_memory_info() return info.rss >> 20 except ImportError: def get_used_memory(): """ Return the used memory in MB """ if platform.system() == 'Linux': for line in open('/proc/self/status'): if line.startswith('VmRSS:'): return int(line.split()[1]) >> 10 else: warnings.warn("Please install psutil to have better " "support with spilling") if platform.system() == "Darwin": import resource rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss return rss >> 20 # TODO: support windows return 0 def _get_local_dirs(sub): """ Get all the directories """ path = os.environ.get("SPARK_LOCAL_DIRS", "/tmp") dirs = path.split(",") if len(dirs) > 1: # different order in different processes and instances rnd = random.Random(os.getpid() + id(dirs)) random.shuffle(dirs, rnd.random) return [os.path.join(d, "python", str(os.getpid()), sub) for d in dirs] # global stats MemoryBytesSpilled = 0 DiskBytesSpilled = 0 class Aggregator(object): """ Aggregator has tree functions to merge values into combiner. createCombiner: (value) -> combiner mergeValue: (combine, value) -> combiner mergeCombiners: (combiner, combiner) -> combiner """ def __init__(self, createCombiner, mergeValue, mergeCombiners): self.createCombiner = createCombiner self.mergeValue = mergeValue self.mergeCombiners = mergeCombiners class SimpleAggregator(Aggregator): """ SimpleAggregator is useful for the cases that combiners have same type with values """ def __init__(self, combiner): Aggregator.__init__(self, lambda x: x, combiner, combiner) class Merger(object): """ Merge shuffled data together by aggregator """ def __init__(self, aggregator): self.agg = aggregator def mergeValues(self, iterator): """ Combine the items by creator and combiner """ raise NotImplementedError def mergeCombiners(self, iterator): """ Merge the combined items by mergeCombiner """ raise NotImplementedError def items(self): """ Return the merged items ad iterator """ raise NotImplementedError def _compressed_serializer(self, serializer=None): # always use PickleSerializer to simplify implementation ser = PickleSerializer() return AutoBatchedSerializer(CompressedSerializer(ser)) class ExternalMerger(Merger): """ External merger will dump the aggregated data into disks when memory usage goes above the limit, then merge them together. This class works as follows: - It repeatedly combine the items and save them in one dict in memory. - When the used memory goes above memory limit, it will split the combined data into partitions by hash code, dump them into disk, one file per partition. - Then it goes through the rest of the iterator, combine items into different dict by hash. Until the used memory goes over memory limit, it dump all the dicts into disks, one file per dict. Repeat this again until combine all the items. - Before return any items, it will load each partition and combine them separately. Yield them before loading next partition. - During loading a partition, if the memory goes over limit, it will partition the loaded data and dump them into disks and load them partition by partition again. `data` and `pdata` are used to hold the merged items in memory. At first, all the data are merged into `data`. Once the used memory goes over limit, the items in `data` are dumped into disks, `data` will be cleared, all rest of items will be merged into `pdata` and then dumped into disks. Before returning, all the items in `pdata` will be dumped into disks. Finally, if any items were spilled into disks, each partition will be merged into `data` and be yielded, then cleared. >>> agg = SimpleAggregator(lambda x, y: x + y) >>> merger = ExternalMerger(agg, 10) >>> N = 10000 >>> merger.mergeValues(zip(range(N), range(N))) >>> assert merger.spills > 0 >>> sum(v for k,v in merger.items()) 49995000 >>> merger = ExternalMerger(agg, 10) >>> merger.mergeCombiners(zip(range(N), range(N))) >>> assert merger.spills > 0 >>> sum(v for k,v in merger.items()) 49995000 """ # the max total partitions created recursively MAX_TOTAL_PARTITIONS = 4096 def __init__(self, aggregator, memory_limit=512, serializer=None, localdirs=None, scale=1, partitions=59, batch=1000): Merger.__init__(self, aggregator) self.memory_limit = memory_limit self.serializer = _compressed_serializer(serializer) self.localdirs = localdirs or _get_local_dirs(str(id(self))) # number of partitions when spill data into disks self.partitions = partitions # check the memory after # of items merged self.batch = batch # scale is used to scale down the hash of key for recursive hash map self.scale = scale # un-partitioned merged data self.data = {} # partitioned merged data, list of dicts self.pdata = [] # number of chunks dumped into disks self.spills = 0 # randomize the hash of key, id(o) is the address of o (aligned by 8) self._seed = id(self) + 7 def _get_spill_dir(self, n): """ Choose one directory for spill by number n """ return os.path.join(self.localdirs[n % len(self.localdirs)], str(n)) def _next_limit(self): """ Return the next memory limit. If the memory is not released after spilling, it will dump the data only when the used memory starts to increase. """ return max(self.memory_limit, get_used_memory() * 1.05) def mergeValues(self, iterator): """ Combine the items by creator and combiner """ # speedup attribute lookup creator, comb = self.agg.createCombiner, self.agg.mergeValue c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch limit = self.memory_limit for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else creator(v) c += 1 if c >= batch: if get_used_memory() >= limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if get_used_memory() >= limit: self._spill() def _partition(self, key): """ Return the partition for key """ return hash((key, self._seed)) % self.partitions def _object_size(self, obj): """ How much of memory for this obj, assume that all the objects consume similar bytes of memory """ return 1 def mergeCombiners(self, iterator, limit=None): """ Merge (K,V) pair by mergeCombiner """ if limit is None: limit = self.memory_limit # speedup attribute lookup comb, hfun, objsize = self.agg.mergeCombiners, self._partition, self._object_size c, data, pdata, batch = 0, self.data, self.pdata, self.batch for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else v if not limit: continue c += objsize(v) if c > batch: if get_used_memory() > limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if limit and get_used_memory() >= limit: self._spill() def _spill(self): """ dump already partitioned data into disks. It will dump the data in batch for better performance. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # dataset once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] for k, v in self.data.items(): h = self._partition(k) # put one item in batch, make it compatible with load_stream # it will increase the memory if dump them in batch self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch self.serializer.dump_stream(iter(self.pdata[i].items()), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 def items(self): """ Return all merged items as iterator """ if not self.pdata and not self.spills: return iter(self.data.items()) return self._external_items() def _external_items(self): """ Return all partitioned items as iterator """ assert not self.data if any(self.pdata): self._spill() # disable partitioning and spilling when merge combiners from disk self.pdata = [] try: for i in range(self.partitions): for v in self._merged_items(i): yield v self.data.clear() # remove the merged partition for j in range(self.spills): path = self._get_spill_dir(j) os.remove(os.path.join(path, str(i))) finally: self._cleanup() def _merged_items(self, index): self.data = {} limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) # do not check memory during merging with open(p, "rb") as f: self.mergeCombiners(self.serializer.load_stream(f), 0) # limit the total partitions if (self.scale * self.partitions < self.MAX_TOTAL_PARTITIONS and j < self.spills - 1 and get_used_memory() > limit): self.data.clear() # will read from disk again gc.collect() # release the memory as much as possible return self._recursive_merged_items(index) return self.data.items() def _recursive_merged_items(self, index): """ merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively. """ subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs] m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs, self.scale * self.partitions, self.partitions, self.batch) m.pdata = [{} for _ in range(self.partitions)] limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb') as f: m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() limit = self._next_limit() return m._external_items() def _cleanup(self): """ Clean up all the files in disks """ for d in self.localdirs: shutil.rmtree(d, True) class ExternalSorter(object): """ ExtenalSorter will divide the elements into chunks, sort them in memory and dump them into disks, finally merge them back. The spilling will only happen when the used memory goes above the limit. >>> sorter = ExternalSorter(1) # 1M >>> import random >>> l = list(range(1024)) >>> random.shuffle(l) >>> sorted(l) == list(sorter.sorted(l)) True >>> sorted(l) == list(sorter.sorted(l, key=lambda x: -x, reverse=True)) True """ def __init__(self, memory_limit, serializer=None): self.memory_limit = memory_limit self.local_dirs = _get_local_dirs("sort") self.serializer = _compressed_serializer(serializer) def _get_path(self, n): """ Choose one directory for spill by number n """ d = self.local_dirs[n % len(self.local_dirs)] if not os.path.exists(d): os.makedirs(d) return os.path.join(d, str(n)) def _next_limit(self): """ Return the next memory limit. If the memory is not released after spilling, it will dump the data only when the used memory starts to increase. """ return max(self.memory_limit, get_used_memory() * 1.05) def sorted(self, iterator, key=None, reverse=False): """ Sort the elements in iterator, do external sort when the memory goes above the limit. """ global MemoryBytesSpilled, DiskBytesSpilled batch, limit = 100, self._next_limit() chunks, current_chunk = [], [] iterator = iter(iterator) while True: # pick elements in batch chunk = list(itertools.islice(iterator, batch)) current_chunk.extend(chunk) if len(chunk) < batch: break used_memory = get_used_memory() if used_memory > limit: # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) def load(f): for v in self.serializer.load_stream(f): yield v # close the file explicit once we consume all the items # to avoid ResourceWarning in Python3 f.close() chunks.append(load(open(path, 'rb'))) current_chunk = [] MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 DiskBytesSpilled += os.path.getsize(path) os.unlink(path) # data will be deleted after close elif not chunks: batch = min(int(batch * 1.5), 10000) current_chunk.sort(key=key, reverse=reverse) if not chunks: return current_chunk if current_chunk: chunks.append(iter(current_chunk)) return heapq.merge(chunks, key=key, reverse=reverse) class ExternalList(object): """ ExternalList can have many items which cannot be hold in memory in the same time. >>> l = ExternalList(list(range(100))) >>> len(l) 100 >>> l.append(10) >>> len(l) 101 >>> for i in range(20240): ... l.append(i) >>> len(l) 20341 >>> import pickle >>> l2 = pickle.loads(pickle.dumps(l)) >>> len(l2) 20341 >>> list(l2)[100] 10 """ LIMIT = 10240 def __init__(self, values): self.values = values self.count = len(values) self._file = None self._ser = None def __getstate__(self): if self._file is not None: self._file.flush() with os.fdopen(os.dup(self._file.fileno()), "rb") as f: f.seek(0) serialized = f.read() else: serialized = b'' return self.values, self.count, serialized def __setstate__(self, item): self.values, self.count, serialized = item if serialized: self._open_file() self._file.write(serialized) else: self._file = None self._ser = None def __iter__(self): if self._file is not None: self._file.flush() # read all items from disks first with os.fdopen(os.dup(self._file.fileno()), 'rb') as f: f.seek(0) for v in self._ser.load_stream(f): yield v for v in self.values: yield v def __len__(self): return self.count def append(self, value): self.values.append(value) self.count += 1 # dump them into disk if the key is huge if len(self.values) >= self.LIMIT: self._spill() def _open_file(self): dirs = _get_local_dirs("objects") d = dirs[id(self) % len(dirs)] if not os.path.exists(d): os.makedirs(d) p = os.path.join(d, str(id(self))) self._file = open(p, "w+b", 65536) self._ser = BatchedSerializer(CompressedSerializer(PickleSerializer()), 1024) os.unlink(p) def __del__(self): if self._file: self._file.close() self._file = None def _spill(self): """ dump the values into disk """ global MemoryBytesSpilled, DiskBytesSpilled if self._file is None: self._open_file() used_memory = get_used_memory() pos = self._file.tell() self._ser.dump_stream(self.values, self._file) self.values = [] gc.collect() DiskBytesSpilled += self._file.tell() - pos MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 class ExternalListOfList(ExternalList): """ An external list for list. >>> l = ExternalListOfList([[i, i] for i in range(100)]) >>> len(l) 200 >>> l.append(range(10)) >>> len(l) 210 >>> len(list(l)) 210 """ def __init__(self, values): ExternalList.__init__(self, values) self.count = sum(len(i) for i in values) def append(self, value): ExternalList.append(self, value) # already counted 1 in ExternalList.append self.count += len(value) - 1 def __iter__(self): for values in ExternalList.__iter__(self): for v in values: yield v class GroupByKey(object): """ Group a sorted iterator as [(k1, it1), (k2, it2), ...] >>> k = [i // 3 for i in range(6)] >>> v = [[i] for i in range(6)] >>> g = GroupByKey(zip(k, v)) >>> [(k, list(it)) for k, it in g] [(0, [0, 1, 2]), (1, [3, 4, 5])] """ def __init__(self, iterator): self.iterator = iterator def __iter__(self): key, values = None, None for k, v in self.iterator: if values is not None and k == key: values.append(v) else: if values is not None: yield (key, values) key = k values = ExternalListOfList([v]) if values is not None: yield (key, values) class ExternalGroupBy(ExternalMerger): """ Group by the items by key. If any partition of them can not been hold in memory, it will do sort based group by. This class works as follows: - It repeatedly group the items by key and save them in one dict in memory. - When the used memory goes above memory limit, it will split the combined data into partitions by hash code, dump them into disk, one file per partition. If the number of keys in one partitions is smaller than 1000, it will sort them by key before dumping into disk. - Then it goes through the rest of the iterator, group items by key into different dict by hash. Until the used memory goes over memory limit, it dump all the dicts into disks, one file per dict. Repeat this again until combine all the items. It also will try to sort the items by key in each partition before dumping into disks. - It will yield the grouped items partitions by partitions. If the data in one partitions can be hold in memory, then it will load and combine them in memory and yield. - If the dataset in one partition cannot be hold in memory, it will sort them first. If all the files are already sorted, it merge them by heap.merge(), so it will do external sort for all the files. - After sorting, `GroupByKey` class will put all the continuous items with the same key as a group, yield the values as an iterator. """ SORT_KEY_LIMIT = 1000 def flattened_serializer(self): assert isinstance(self.serializer, BatchedSerializer) ser = self.serializer return FlattenedValuesSerializer(ser, 20) def _object_size(self, obj): return len(obj) def _spill(self): """ dump already partitioned data into disks. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # data once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] # If the number of keys is small, then the overhead of sort is small # sort them before dumping into disks self._sorted = len(self.data) < self.SORT_KEY_LIMIT if self._sorted: self.serializer = self.flattened_serializer() for k in sorted(self.data.keys()): h = self._partition(k) self.serializer.dump_stream([(k, self.data[k])], streams[h]) else: for k, v in self.data.items(): h = self._partition(k) self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() # self.pdata is cached in `mergeValues` and `mergeCombiners` self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch if self._sorted: # sort by key only (stable) sorted_items = sorted(self.pdata[i].items(), key=operator.itemgetter(0)) self.serializer.dump_stream(sorted_items, f) else: self.serializer.dump_stream(self.pdata[i].items(), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 def _merged_items(self, index): size = sum(os.path.getsize(os.path.join(self._get_spill_dir(j), str(index))) for j in range(self.spills)) # if the memory can not hold all the partition, # then use sort based merge. Because of compression, # the data on disks will be much smaller than needed memory if size >= self.memory_limit << 17: # * 1M / 8 return self._merge_sorted_items(index) self.data = {} for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) # do not check memory during merging with open(p, "rb") as f: self.mergeCombiners(self.serializer.load_stream(f), 0) return self.data.items() def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb', 65536) as f: for v in self.serializer.load_stream(f): yield v disk_items = [load_partition(j) for j in range(self.spills)] if self._sorted: # all the partitions are already sorted sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0)) else: # Flatten the combined values, so it will not consume huge # memory during merging sort. ser = self.flattened_serializer() sorter = ExternalSorter(self.memory_limit, ser) sorted_items = sorter.sorted(itertools.chain(*disk_items), key=operator.itemgetter(0)) return ((k, vs) for k, vs in GroupByKey(sorted_items)) if __name__ == "__main__": import doctest (failure_count, test_count) = doctest.testmod() if failure_count: exit(-1)