
>>> Channeling the Inner Complexity
>>> or, lightweight threads and channels for Scala

Name: Jakob Odersky
Date: 2018-11-15

[~]$ _ [1/36]

>>> Overview

* Basic concurrency models
* Futures and Promises
* Channels and lightweight threads

[~]$ _ [2/36]

>>> Definitions

* parallelism: the simultaneous execution on multiple
processors of different parts of a program1

* concurrency: the ability of different parts of a program
to be executed out-of-order or in partial order, without
affecting the final outcome2

1https://en.wikipedia.org/wiki/Parallelism
2https://en.wikipedia.org/wiki/Concurrency_(computer_science)

[~]$ _ [3/36]

>>> Premise

* scalable programs need a good concurrency model

* “good”:

* increased efficiency (take advantage of parallelism)
* reduced complexity

[~]$ _ [4/36]

>>> Concurrency - Threads

* single entry point, sequence of instructions

* traditional way to decompose programs for parallel
execution

* own stack and kernel resources (fairly expensive)

* context switches (fairly expensive)

* runnable on a physical processor

[~]$ _ [5/36]

>>> Single Thread

def mkmeme(imageUrl: String, text: String): Image = {
val layer1: Image = fetchUrl(imageUrl) // network call
val layer2: Image = textToImage(text) // slow
superimpose(layer1, layer2) // need both results

}

[~]$ _ [6/36]

>>> Single Thread

* concurrency unit is the whole program

[~]$ _ [7/36]

>>> Many Threads

def mkmeme(imageUrl: String, text: String): Image = {
var layer1: Image = null
var layer2: Image = null
thread {
layer1 = fetchUrl(imageUrl)

}
thread {
layer2 = textToImage(text)

}
while(layer1 == null || layer2 == null) {
// wait somehow

}
superimpose(layer1, layer2)

}

[~]$ _ [8/36]

>>> Many Threads

* synchronization between threads at some point

* rendezvous through memory barriers (CMPXCHG)

* logic flow much more complex

* threads, blocked and running

* consume memory
* memory is cheap! create more threads? context switches

* threads are a low-level building block, using them
efficiently is complex

* not available on all platforms (i.e. browser)

[~]$ _ [9/36]

>>> Multiple Threads, Queue-based

def mkmeme(imageUrl: String, text: String): Image = {
val q1 = Queue[Image]
val q2 = Queue[Image]
thread {
q1.put(fetchUrl(imageUrl))

}
thread {
q2.put(textToImage(text))

}
superimpose(q1.take(), q2.take())

}

[~]$ _ [10/36]

>>> Multiple Threads, Queue-based

* simpler logic flow
* same resource usage as plain threads

[~]$ _ [11/36]

>>> Concurrency - Callbacks

* “reactive”

* many entrypoints

* register operation on event

* “call back” when event has happened, operation is run

* examples:

* JavaScript
* libuv
* event loops

* in a sense, a more fundamental construct

–

[~]$ _ [12/36]

>>> Callbacks
def mkmeme(imageUrl: String, text: String,

callback: Image => Unit): Unit = {
var layer1 = null
var layer2 = null
def combine() = callback(superimpose(layer1, layer2))
fetchUrl(imageUrl, img => {
layer1 = img
if (layer2 != null) { //!\\ danger if parallelism > 1
combine()

}
})
textToImage(text, img => {
layer2 = img
if (layer1 != null) {
combine()

}
})

}
[~]$ _ [13/36]

[~]$ _ [14/36]

>>> Callbacks

* advantages:

* little resource overhead
* available on all platforms
* runnable on many processors

* disadvantage:

* program logic quickly becomes extremely complex and
scattered: callback hell

[~]$ _ [15/36]

* can we wrap callbacks in a more functional way?

* reduce complexity
* keep efficiency, and run it on ideal number of processors

[~]$ _ [16/36]

>>> Concurrency - Futures

scala.concurrent.Future[A]
* contains an operation of result type A
* transformable with map and flatMap
* when operation is run, future completes with a result
(success or failure)

[~]$ _ [17/36]

>>> Future

def mkmeme(imageUrl: String, text: String): Future[Image] = {
val layer1: Future[Image] = fetchUrl(imageUrl)
val layer2: Future[Image] = textToImage(text)
for {
l1 <- layer1
l2 <- layer2

} yield {
superimpose(l1, l2)

}
}

[~]$ _ [18/36]

>>> Promises

scala.concurren.Promise[A]
* used to create and complete futures at the edge of the
callback graph

[~]$ _ [19/36]

// ScalaJS, env: browser

def url: Future[String] = {
val promise = Promise[String] // create promise
input.onsubmit(_ => promise.success(input.value))
promise.future

}

// single callback at the edge
url.map(fetch).onComplete{
case Success(site) => webview.value = site
case Failure(error) =>
textbox.value = "oh no!"
textbox.color = red

}

[~]$ _ [20/36]

>>> Execution Contexts

Who runs a future?

* one process traverses all callbacks? no!
* operation “chunks” on an execution context

ExecutionContext
* contains graph of callbacks as chunks

future1.flatMap(f1 => op1(f1).map(op2(_))(ec))(ec)

* chunks are run on a ThreadPool

ThreadPool
* (limited) group of threads
* every thread runs a chunk, when done takes a next chunk

* aside: when done ← this is why blocking in futures is
not recomended

[~]$ _ [21/36]

>>> Futures - Composition

def lookupUser(id: String): Future[Option[User]]
def authorize(user: User, capabilities: Set[Cap]):
Future[Option[User]]

def authorizeduser(userId: String): Future[Option[User]] = {
lookupUser(userId).flatMap{
case None => Future.successful(None)
case Some(user) => authorize(user, Set("see_meme"))

}
}

[~]$ _ [22/36]

>>> Futures - Shortcomings

1. composition can be messy3

2. one-shot; it is not simple to model recurrent events

3monad transformers may help

[~]$ _ [23/36]

>>> Solution to 1 - Scala Async

* Can we write a program that looks synchronous
(single-threaded), but is split into chunks and run on a
thread pool?

* yes, with macros!

* two constructs:

* async(a: => A): Future[A] // macro
* await(f: Future[A]): A // usable only in await

* installs handlers on futures to run a state machine

* official project of the Scala Center

* https://github.com/scala/scala-async

* see also python async

[~]$ _ [24/36]

https://github.com/scala/scala-async

import scala.concurrent.ExecutionContext.Implicits.global
import scala.async.Async._

// looks like single-threaded code
def mkmeme(imageUrl: String, text: String): Future[Image] =
async {
val layer1 = await(fetchUrl(imageUrl))
val layer2 = await(textToImage(text))
superimpose(layer1, layer2)

}

[~]$ _ [25/36]

>>> Solution to 2 - Channels

* futures are one-shot value

* queues are general useful construct for scalable programs

* separation of concerns

* as shown previously, traditional thread-based queues
block

* can we avoid blocking, yet keep the programming model?

[~]$ _ [26/36]

>>> Solution to 2 - Channels

* project “escale” (fr. stop, as in bus stop)

* inspired from Clojure’s core.async library

* watch Rich Hickey’s talk about it
https://www.infoq.com/presentations/core-async-clojure

* constructs:

* go {block}: Future[A] ~ lightweight thread
* Channel[A] ~ queue
* ch.put(value: A): Future[A] ~ write operation
* ch.take(): Future[A] ~ read operation
* select(ch: Channel[_]*)

* syntax sugar

* form of communicating sequential processes (CSP) [1]

* there is a formal mathematical model

* since runtime is abstracted, runs on JVM, JS and Native

[~]$ _ [27/36]

https://www.infoq.com/presentations/core-async-clojure

>>> escale
import scala.concurrent.ExecutionContext.Implicits.global
import escale.syntax._

val ch = chan[Int]() // create a channel

go {
ch !< 1 // write to channel, "block" if no room
println("wrote 1")

}
go {
ch !< 2
println("wrote 2")

}

go {
val r: Int = !<(ch) // read from channel
println(r)
println(!<(ch))

}[~]$ _ [28/36]

>>> escale

import escale.syntax._

go {
val Ch1 = chan[Int]() // create a channel
val Ch2 = chan[Int]()

go { Ch1 !< 1 } // write to channel
go { Ch2 !< 1 }

// "await" one and only one value
select(Ch1, Ch2) match {
case (Ch1, value) => "ch1 was first"
case (Ch2, value) => "ch2 was first"

}
}

[~]$ _ [29/36]

>>> escale - Implementation

* proof-of-concept

* https://github.com/jodersky/escale (soon)

* channels take care of buffering and efficient locking
operations

* put and take return futures (select slightly more
complex, but also returns a future)

* rely on scala-async to transform future into state
machine

* provide syntax sugar to hide calls to await and alias
async

[~]$ _ [30/36]

>>> escale - Roadmap

* channel closing and error handling

* deeper integration with scala async

* explore working with the state machine directly, rather
than relying on double macro transformations

* select on puts

* buffer policies (drop first, sliding window)

* API improvements:

* consider replacing symbols
* remove wilcard import escale.sytntax._
* directionality type refinements

[~]$ _ [31/36]

>>> Summary: what have we done?

* replaced queues and threads with conceptually lightweight
queues and threads

* same programming model, better concurrency
* in a library!

All problems in computer science can be solved by another
level of indirection.

[~]$ _ [32/36]

>>> Other Approaches

Actors
* actors and CSP can be considered duals
* actors are named, processes are anonymous
* message path is anonymous, channels are named
* sending messages is fundamentally non-blocking, whereas
(unbuffered) channels can serve as rendezvous points

Reactive Streams
* builds a protocol on top of actors to achieve rendezvous
capabilities and backpressure

[~]$ _ [33/36]

>>> Guidelines

Keep programs simple, it will make it easier for others to
understand.

1. write synchronous logic
2. use futures and promises with scala-async
3. escale and other concurrency libraries
4. ...
5. ...
6. ...
7. ...
8. ...
9. ...

10. consider callbacks

[~]$ _ [34/36]

>>> Thank You!

* slides: https://jakob.odersky.com/talks

* project: https://github.com/jodersky/escale

* author: @jodersky

[~]$ _ [35/36]

>>> References

[1] C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM. 21 (8), pp. 666–667, 1978.

[~]$ _ [36/36]

