aboutsummaryrefslogtreecommitdiff
path: root/nuttx/fs/fat/fs_fat32util.c
diff options
context:
space:
mode:
Diffstat (limited to 'nuttx/fs/fat/fs_fat32util.c')
-rw-r--r--nuttx/fs/fat/fs_fat32util.c1856
1 files changed, 1856 insertions, 0 deletions
diff --git a/nuttx/fs/fat/fs_fat32util.c b/nuttx/fs/fat/fs_fat32util.c
new file mode 100644
index 000000000..397467c41
--- /dev/null
+++ b/nuttx/fs/fat/fs_fat32util.c
@@ -0,0 +1,1856 @@
+/****************************************************************************
+ * fs/fat/fs_fat32util.c
+ *
+ * Copyright (C) 2007-2009, 2011 Gregory Nutt. All rights reserved.
+ * Author: Gregory Nutt <gnutt@nuttx.org>
+ *
+ * References:
+ * Microsoft FAT documentation
+ * Some good ideas were leveraged from the FAT implementation:
+ * 'Copyright (C) 2007, ChaN, all right reserved.'
+ * which has an unrestricted license.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name NuttX nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/****************************************************************************
+ * Included Files
+ ****************************************************************************/
+
+#include <nuttx/config.h>
+
+#include <sys/types.h>
+#include <stdint.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <semaphore.h>
+#include <assert.h>
+#include <errno.h>
+#include <debug.h>
+
+#include <nuttx/kmalloc.h>
+#include <nuttx/fs/fs.h>
+#include <nuttx/fs/fat.h>
+
+#include "fs_internal.h"
+#include "fs_fat32.h"
+
+/****************************************************************************
+ * Definitions
+ ****************************************************************************/
+
+/****************************************************************************
+ * Private Types
+ ****************************************************************************/
+
+/****************************************************************************
+ * Private Function Prototypes
+ ****************************************************************************/
+
+/****************************************************************************
+ * Private Variables
+ ****************************************************************************/
+
+/****************************************************************************
+ * Public Variables
+ ****************************************************************************/
+
+/****************************************************************************
+ * Private Functions
+ ****************************************************************************/
+
+/****************************************************************************
+ * Name: fat_checkfsinfo
+ *
+ * Desciption: Read the FAT32 FSINFO sector
+ *
+ ****************************************************************************/
+
+static int fat_checkfsinfo(struct fat_mountpt_s *fs)
+{
+ /* Make sure that the fsinfo sector is in the cache */
+
+ if (fat_fscacheread(fs, fs->fs_fsinfo) == OK)
+ {
+ /* Verify that this is, indeed, an FSINFO sector */
+
+ if (FSI_GETLEADSIG(fs->fs_buffer) == 0x41615252 &&
+ FSI_GETSTRUCTSIG(fs->fs_buffer) == 0x61417272 &&
+ FSI_GETTRAILSIG(fs->fs_buffer) == BOOT_SIGNATURE32)
+ {
+ fs->fs_fsinextfree = FSI_GETFREECOUNT(fs->fs_buffer);
+ fs->fs_fsifreecount = FSI_GETNXTFREE(fs->fs_buffer);
+ return OK;
+ }
+ }
+
+ return -ENODEV;
+}
+
+/****************************************************************************
+ * Name: fat_checkbootrecord
+ *
+ * Desciption: Read a sector and verify that it is a a FAT boot record.
+ *
+ ****************************************************************************/
+
+static int fat_checkbootrecord(struct fat_mountpt_s *fs)
+{
+ uint32_t ndatasectors;
+ uint32_t ntotalfatsects;
+ uint16_t rootdirsectors = 0;
+ bool notfat32 = false;
+
+ /* Verify the MBR signature at offset 510 in the sector (true even
+ * if the sector size is greater than 512. All FAT file systems have
+ * this signature. On a FAT32 volume, the RootEntCount , FatSz16, and
+ * FatSz32 values should always be zero. The FAT sector size should
+ * match the reported hardware sector size.
+ */
+
+ if (MBR_GETSIGNATURE(fs->fs_buffer) != BOOT_SIGNATURE16 ||
+ MBR_GETBYTESPERSEC(fs->fs_buffer) != fs->fs_hwsectorsize)
+ {
+ fdbg("ERROR: Signature: %04x FS sectorsize: %d HW sectorsize: %d\n",
+ MBR_GETSIGNATURE(fs->fs_buffer), MBR_GETBYTESPERSEC(fs->fs_buffer),
+ fs->fs_hwsectorsize);
+
+ return -EINVAL;
+ }
+
+ /* Verify the FAT32 file system type. The determination of the file
+ * system type is based on the number of clusters on the volume: FAT12
+ * volume has <= FAT_MAXCLUST12 (4084) clusters, a FAT16 volume has <=
+ * FAT_MINCLUST16 (microsfoft says < 65,525) clusters, and any larger
+ * is FAT32.
+ *
+ * Get the number of 32-bit directory entries in root directory (zero
+ * for FAT32).
+ */
+
+ fs->fs_rootentcnt = MBR_GETROOTENTCNT(fs->fs_buffer);
+ if (fs->fs_rootentcnt != 0)
+ {
+ notfat32 = true; /* Must be zero for FAT32 */
+ rootdirsectors = (32 * fs->fs_rootentcnt + fs->fs_hwsectorsize - 1) / fs->fs_hwsectorsize;
+ }
+
+ /* Determine the number of sectors in a FAT. */
+
+ fs->fs_nfatsects = MBR_GETFATSZ16(fs->fs_buffer); /* Should be zero */
+ if (fs->fs_nfatsects)
+ {
+ notfat32 = true; /* Must be zero for FAT32 */
+ }
+ else
+ {
+ fs->fs_nfatsects = MBR_GETFATSZ32(fs->fs_buffer);
+ }
+
+ if (!fs->fs_nfatsects || fs->fs_nfatsects >= fs->fs_hwnsectors)
+ {
+ fdbg("ERROR: fs_nfatsects %d fs_hwnsectors: %d\n",
+ fs->fs_nfatsects, fs->fs_hwnsectors);
+
+ return -EINVAL;
+ }
+
+ /* Get the total number of sectors on the volume. */
+
+ fs->fs_fattotsec = MBR_GETTOTSEC16(fs->fs_buffer); /* Should be zero */
+ if (fs->fs_fattotsec)
+ {
+ notfat32 = true; /* Must be zero for FAT32 */
+ }
+ else
+ {
+ fs->fs_fattotsec = MBR_GETTOTSEC32(fs->fs_buffer);
+ }
+
+ if (!fs->fs_fattotsec || fs->fs_fattotsec > fs->fs_hwnsectors)
+ {
+ fdbg("ERROR: fs_fattotsec %d fs_hwnsectors: %d\n",
+ fs->fs_fattotsec, fs->fs_hwnsectors);
+
+ return -EINVAL;
+ }
+
+ /* Get the total number of reserved sectors */
+
+ fs->fs_fatresvdseccount = MBR_GETRESVDSECCOUNT(fs->fs_buffer);
+ if (fs->fs_fatresvdseccount > fs->fs_hwnsectors)
+ {
+ fdbg("ERROR: fs_fatresvdseccount %d fs_hwnsectors: %d\n",
+ fs->fs_fatresvdseccount, fs->fs_hwnsectors);
+
+ return -EINVAL;
+ }
+
+ /* Get the number of FATs. This is probably two but could have other values */
+
+ fs->fs_fatnumfats = MBR_GETNUMFATS(fs->fs_buffer);
+ ntotalfatsects = fs->fs_fatnumfats * fs->fs_nfatsects;
+
+ /* Get the total number of data sectors */
+
+ ndatasectors = fs->fs_fattotsec - fs->fs_fatresvdseccount - ntotalfatsects - rootdirsectors;
+ if (ndatasectors > fs->fs_hwnsectors)
+ {
+ fdbg("ERROR: ndatasectors %d fs_hwnsectors: %d\n",
+ ndatasectors, fs->fs_hwnsectors);
+
+ return -EINVAL;
+ }
+
+ /* Get the sectors per cluster */
+
+ fs->fs_fatsecperclus = MBR_GETSECPERCLUS(fs->fs_buffer);
+
+ /* Calculate the number of clusters */
+
+ fs->fs_nclusters = ndatasectors / fs->fs_fatsecperclus;
+
+ /* Finally, the test: */
+
+ if (fs->fs_nclusters <= FAT_MAXCLUST12)
+ {
+ fs->fs_fsinfo = 0;
+ fs->fs_type = FSTYPE_FAT12;
+ }
+ else if (fs->fs_nclusters <= FAT_MAXCLUST16)
+ {
+ fs->fs_fsinfo = 0;
+ fs->fs_type = FSTYPE_FAT16;
+ }
+ else if (!notfat32)
+ {
+ fs->fs_fsinfo = fs->fs_fatbase + MBR_GETFSINFO(fs->fs_buffer);
+ fs->fs_type = FSTYPE_FAT32;
+ }
+ else
+ {
+ fdbg("ERROR: notfat32: %d fs_nclusters: %d\n",
+ notfat32, fs->fs_nclusters);
+
+ return -EINVAL;
+ }
+
+ /* We have what appears to be a valid FAT filesystem! Save a few more things
+ * from the boot record that we will need later.
+ */
+
+ fs->fs_fatbase += fs->fs_fatresvdseccount;
+
+ if (fs->fs_type == FSTYPE_FAT32)
+ {
+ fs->fs_rootbase = MBR_GETROOTCLUS(fs->fs_buffer);
+ }
+ else
+ {
+ fs->fs_rootbase = fs->fs_fatbase + ntotalfatsects;
+ }
+
+ fs->fs_database = fs->fs_fatbase + ntotalfatsects + fs->fs_rootentcnt / DIRSEC_NDIRS(fs);
+ fs->fs_fsifreecount = 0xffffffff;
+
+ return OK;
+}
+
+/****************************************************************************
+ * Public Functions
+ ****************************************************************************/
+
+/****************************************************************************
+ * Name: fat_getuint16
+ ****************************************************************************/
+
+uint16_t fat_getuint16(uint8_t *ptr)
+{
+#ifdef CONFIG_ENDIAN_BIG
+ /* The bytes always have to be swapped if the target is big-endian */
+
+ return ((uint16_t)ptr[0] << 8) | ptr[1];
+#else
+ /* Byte-by-byte transfer is still necessary if the address is un-aligned */
+
+ return ((uint16_t)ptr[1] << 8) | ptr[0];
+#endif
+}
+
+/****************************************************************************
+ * Name: fat_getuint32
+ ****************************************************************************/
+
+uint32_t fat_getuint32(uint8_t *ptr)
+{
+#ifdef CONFIG_ENDIAN_BIG
+ /* The bytes always have to be swapped if the target is big-endian */
+
+ return ((uint32_t)fat_getuint16(&ptr[0]) << 16) | fat_getuint16(&ptr[2]);
+#else
+ /* Byte-by-byte transfer is still necessary if the address is un-aligned */
+
+ return ((uint32_t)fat_getuint16(&ptr[2]) << 16) | fat_getuint16(&ptr[0]);
+#endif
+}
+
+/****************************************************************************
+ * Name: fat_putuint16
+ ****************************************************************************/
+
+void fat_putuint16(uint8_t *ptr, uint16_t value16)
+{
+ uint8_t *val = (uint8_t*)&value16;
+#ifdef CONFIG_ENDIAN_BIG
+ /* The bytes always have to be swapped if the target is big-endian */
+
+ ptr[0] = val[1];
+ ptr[1] = val[0];
+#else
+ /* Byte-by-byte transfer is still necessary if the address is un-aligned */
+
+ ptr[0] = val[0];
+ ptr[1] = val[1];
+#endif
+}
+
+/****************************************************************************
+ * Name: fat_putuint32
+ ****************************************************************************/
+
+void fat_putuint32(uint8_t *ptr, uint32_t value32)
+{
+ uint16_t *val = (uint16_t*)&value32;
+#ifdef CONFIG_ENDIAN_BIG
+ /* The bytes always have to be swapped if the target is big-endian */
+
+ fat_putuint16(&ptr[0], val[2]);
+ fat_putuint16(&ptr[2], val[0]);
+#else
+ /* Byte-by-byte transfer is still necessary if the address is un-aligned */
+
+ fat_putuint16(&ptr[0], val[0]);
+ fat_putuint16(&ptr[2], val[2]);
+#endif
+}
+
+/****************************************************************************
+ * Name: fat_semtake
+ ****************************************************************************/
+
+void fat_semtake(struct fat_mountpt_s *fs)
+{
+ /* Take the semaphore (perhaps waiting) */
+
+ while (sem_wait(&fs->fs_sem) != 0)
+ {
+ /* The only case that an error should occur here is if
+ * the wait was awakened by a signal.
+ */
+
+ ASSERT(*get_errno_ptr() == EINTR);
+ }
+}
+
+/****************************************************************************
+ * Name: fat_semgive
+ ****************************************************************************/
+
+void fat_semgive(struct fat_mountpt_s *fs)
+{
+ sem_post(&fs->fs_sem);
+}
+
+/****************************************************************************
+ * Name: fat_systime2fattime
+ *
+ * Desciption: Get the system time convert to a time and and date suitble
+ * for writing into the FAT FS.
+ *
+ * TIME in LS 16-bits:
+ * Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
+ * Bits 5-10 = minutes (0-59)
+ * Bits 11-15 = hours (0-23)
+ * DATE in MS 16-bits
+ * Bits 0:4 = Day of month (1-31)
+ * Bits 5:8 = Month of year (1-12)
+ * Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
+ *
+ ****************************************************************************/
+
+uint32_t fat_systime2fattime(void)
+{
+ /* Unless you have a hardware RTC or some other to get accurate time, then
+ * there is no reason to support FAT time.
+ */
+
+#ifdef CONFIG_FS_FATTIME
+ struct timespec ts;
+ struct tm tm;
+ int ret;
+
+ /* Get the current time in seconds and nanoseconds */
+
+ ret = clock_gettime(CLOCK_REALTIME, &ts);
+ if (ret == OK)
+ {
+ /* Break done the seconds in date and time units */
+
+ if (gmtime_r((FAR const time_t *)&ts.tv_sec, &tm) != NULL)
+ {
+ /* FAT can only represent dates since 1980. struct tm can
+ * represent dates since 1900.
+ */
+
+ if (tm.tm_year >= 80)
+ {
+ uint16_t fattime;
+ uint16_t fatdate;
+
+ fattime = (tm.tm_sec >> 1) & 0x001f; /* Bits 0-4: 2 second count (0-29) */
+ fattime |= (tm.tm_min << 5) & 0x07e0; /* Bits 5-10: minutes (0-59) */
+ fattime |= (tm.tm_hour << 11) & 0xf800; /* Bits 11-15: hours (0-23) */
+
+ fatdate = tm.tm_mday & 0x001f; /* Bits 0-4: Day of month (1-31) */
+ fatdate |= ((tm.tm_mon+1) << 5) & 0x01e0; /* Bits 5-8: Month of year (1-12) */
+ fatdate |= ((tm.tm_year-80) << 9) & 0xfe00; /* Bits 9-15: Year from 1980 */
+
+ return (uint32_t)fatdate << 16 | (uint32_t)fattime;
+ }
+ }
+ }
+#endif
+ return 0;
+}
+
+/****************************************************************************
+ * Name: fat_fattime2systime
+ *
+ * Desciption: Convert FAT data and time to a system time_t
+ *
+ * 16-bit FAT time:
+ * Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
+ * Bits 5-10 = minutes (0-59)
+ * Bits 11-15 = hours (0-23)
+ * 16-bit FAT date:
+ * Bits 0:4 = Day of month (1-31)
+ * Bits 5:8 = Month of year (1-12)
+ * Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
+ *
+ ****************************************************************************/
+
+time_t fat_fattime2systime(uint16_t fattime, uint16_t fatdate)
+{
+ /* Unless you have a hardware RTC or some other to get accurate time, then
+ * there is no reason to support FAT time.
+ */
+
+#ifdef CONFIG_FS_FATTIME
+ struct tm tm;
+ unsigned int tmp;
+
+ /* Break out the date and time */
+
+ tm.tm_sec = (fattime & 0x001f) << 1; /* Bits 0-4: 2 second count (0-29) */
+ tm.tm_min = (fattime & 0x07e0) >> 5; /* Bits 5-10: minutes (0-59) */
+ tm.tm_hour = (fattime & 0xf800) >> 11; /* Bits 11-15: hours (0-23) */
+
+ tm.tm_mday = (fatdate & 0x001f); /* Bits 0-4: Day of month (1-31) */
+ tmp = ((fatdate & 0x01e0) >> 5); /* Bits 5-8: Month of year (1-12) */
+ tm.tm_mon = tmp > 0 ? tmp-1 : 0;
+ tm.tm_year = ((fatdate & 0xfe00) >> 9) + 80; /* Bits 9-15: Year from 1980 */
+
+ /* Then convert the broken out time into seconds since the epoch */
+
+ return mktime(&tm);
+#else
+ return 0;
+#endif
+}
+
+/****************************************************************************
+ * Name: fat_mount
+ *
+ * Desciption: This function is called only when the mountpoint is first
+ * established. It initializes the mountpoint structure and verifies
+ * that a valid FAT32 filesystem is provided by the block driver.
+ *
+ * The caller should hold the mountpoint semaphore
+ *
+ ****************************************************************************/
+
+int fat_mount(struct fat_mountpt_s *fs, bool writeable)
+{
+ FAR struct inode *inode;
+ struct geometry geo;
+ int ret;
+
+ /* Assume that the mount is successful */
+
+ fs->fs_mounted = true;
+
+ /* Check if there is media available */
+
+ inode = fs->fs_blkdriver;
+ if (!inode || !inode->u.i_bops || !inode->u.i_bops->geometry ||
+ inode->u.i_bops->geometry(inode, &geo) != OK || !geo.geo_available)
+ {
+ ret = -ENODEV;
+ goto errout;
+ }
+
+ /* Make sure that that the media is write-able (if write access is needed) */
+
+ if (writeable && !geo.geo_writeenabled)
+ {
+ ret = -EACCES;
+ goto errout;
+ }
+
+ /* Save the hardware geometry */
+
+ fs->fs_hwsectorsize = geo.geo_sectorsize;
+ fs->fs_hwnsectors = geo.geo_nsectors;
+
+ /* Allocate a buffer to hold one hardware sector */
+
+ fs->fs_buffer = (uint8_t*)kmalloc(fs->fs_hwsectorsize);
+ if (!fs->fs_buffer)
+ {
+ ret = -ENOMEM;
+ goto errout;
+ }
+
+ /* Search FAT boot record on the drive. First check at sector zero. This
+ * could be either the boot record or a partition that refers to the boot
+ * record.
+ *
+ * First read sector zero. This will be the first access to the drive and a
+ * likely failure point.
+ */
+
+ fs->fs_fatbase = 0;
+ ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
+ if (ret < 0)
+ {
+ goto errout_with_buffer;
+ }
+
+ ret = fat_checkbootrecord(fs);
+ if (ret != OK)
+ {
+ /* The contents of sector 0 is not a boot record. It could be a
+ * partition, however. Assume it is a partition and get the offset
+ * into the partition table. This table is at offset MBR_TABLE and is
+ * indexed by 16x the partition number.
+ */
+
+ int i;
+ for (i = 0; i < 4; i++)
+ {
+ /* Check if the partition exists and, if so, get the bootsector for that
+ * partition and see if we can find the boot record there.
+ */
+
+ uint8_t part = PART_GETTYPE(i, fs->fs_buffer);
+ fvdbg("Partition %d, offset %d, type %d\n", i, PART_ENTRY(i), part);
+
+ if (part == 0)
+ {
+ fvdbg("No partition %d\n", i);
+ continue;
+ }
+
+ /* There appears to be a partition, get the sector number of the
+ * partition (LBA)
+ */
+
+ fs->fs_fatbase = PART_GETSTARTSECTOR(i, fs->fs_buffer);
+
+ /* Read the new candidate boot sector */
+
+ ret = fat_hwread(fs, fs->fs_buffer, fs->fs_fatbase, 1);
+ if (ret < 0)
+ {
+ /* Failed to read the sector */
+
+ goto errout_with_buffer;
+ }
+
+ /* Check if this is a boot record */
+
+ ret = fat_checkbootrecord(fs);
+ if (ret == OK)
+ {
+ /* Break out of the loop if a valid boot record is found */
+
+ fvdbg("MBR found in partition %d\n", i);
+ break;
+ }
+
+ /* Re-read sector 0 so that we can check the next partition */
+
+ fvdbg("Partition %d is not an MBR\n", i);
+ ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
+ if (ret < 0)
+ {
+ goto errout_with_buffer;
+ }
+ }
+
+ if (i > 3)
+ {
+ fdbg("No valid MBR\n");
+ goto errout_with_buffer;
+ }
+ }
+
+ /* We have what appears to be a valid FAT filesystem! Now read the
+ * FSINFO sector (FAT32 only)
+ */
+
+ if (fs->fs_type == FSTYPE_FAT32)
+ {
+ ret = fat_checkfsinfo(fs);
+ if (ret != OK)
+ {
+ goto errout_with_buffer;
+ }
+ }
+
+ /* We did it! */
+
+ fdbg("FAT%d:\n", fs->fs_type == 0 ? 12 : fs->fs_type == 1 ? 16 : 32);
+ fdbg("\tHW sector size: %d\n", fs->fs_hwsectorsize);
+ fdbg("\t sectors: %d\n", fs->fs_hwnsectors);
+ fdbg("\tFAT reserved: %d\n", fs->fs_fatresvdseccount);
+ fdbg("\t sectors: %d\n", fs->fs_fattotsec);
+ fdbg("\t start sector: %d\n", fs->fs_fatbase);
+ fdbg("\t root sector: %d\n", fs->fs_rootbase);
+ fdbg("\t root entries: %d\n", fs->fs_rootentcnt);
+ fdbg("\t data sector: %d\n", fs->fs_database);
+ fdbg("\t FSINFO sector: %d\n", fs->fs_fsinfo);
+ fdbg("\t Num FATs: %d\n", fs->fs_fatnumfats);
+ fdbg("\t FAT sectors: %d\n", fs->fs_nfatsects);
+ fdbg("\t sectors/cluster: %d\n", fs->fs_fatsecperclus);
+ fdbg("\t max clusters: %d\n", fs->fs_nclusters);
+ fdbg("\tFSI free count %d\n", fs->fs_fsifreecount);
+ fdbg("\t next free %d\n", fs->fs_fsinextfree);
+
+ return OK;
+
+ errout_with_buffer:
+ kfree(fs->fs_buffer);
+ fs->fs_buffer = 0;
+ errout:
+ fs->fs_mounted = false;
+ return ret;
+}
+
+/****************************************************************************
+ * Name: fat_checkmount
+ *
+ * Desciption: Check if the mountpoint is still valid.
+ *
+ * The caller should hold the mountpoint semaphore
+ *
+ ****************************************************************************/
+
+int fat_checkmount(struct fat_mountpt_s *fs)
+{
+ /* If the fs_mounted flag is false, then we have already handled the loss
+ * of the mount.
+ */
+
+ if (fs && fs->fs_mounted)
+ {
+ struct fat_file_s *file;
+
+ /* We still think the mount is healthy. Check an see if this is
+ * still the case
+ */
+
+ if (fs->fs_blkdriver)
+ {
+ struct inode *inode = fs->fs_blkdriver;
+ if (inode && inode->u.i_bops && inode->u.i_bops->geometry)
+ {
+ struct geometry geo;
+ int errcode = inode->u.i_bops->geometry(inode, &geo);
+ if (errcode == OK && geo.geo_available && !geo.geo_mediachanged)
+ {
+ return OK;
+ }
+ }
+ }
+
+ /* If we get here, the mount is NOT healthy */
+
+ fs->fs_mounted = false;
+
+ /* Make sure that this is flagged in every opened file */
+
+ for (file = fs->fs_head; file; file = file->ff_next)
+ {
+ file->ff_open = false;
+ }
+ }
+ return -ENODEV;
+}
+
+/****************************************************************************
+ * Name: fat_hwread
+ *
+ * Desciption: Read the specified sector into the sector buffer
+ *
+ ****************************************************************************/
+
+int fat_hwread(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
+ unsigned int nsectors)
+{
+ int ret = -ENODEV;
+ if (fs && fs->fs_blkdriver )
+ {
+ struct inode *inode = fs->fs_blkdriver;
+ if (inode && inode->u.i_bops && inode->u.i_bops->read)
+ {
+ ssize_t nSectorsRead = inode->u.i_bops->read(inode, buffer,
+ sector, nsectors);
+ if (nSectorsRead == nsectors)
+ {
+ ret = OK;
+ }
+ else if (nSectorsRead < 0)
+ {
+ ret = nSectorsRead;
+ }
+ }
+ }
+ return ret;
+}
+
+/****************************************************************************
+ * Name: fat_hwwrite
+ *
+ * Desciption: Write the sector buffer to the specified sector
+ *
+ ****************************************************************************/
+
+int fat_hwwrite(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
+ unsigned int nsectors)
+{
+ int ret = -ENODEV;
+ if (fs && fs->fs_blkdriver )
+ {
+ struct inode *inode = fs->fs_blkdriver;
+ if (inode && inode->u.i_bops && inode->u.i_bops->write)
+ {
+ ssize_t nSectorsWritten =
+ inode->u.i_bops->write(inode, buffer, sector, nsectors);
+
+ if (nSectorsWritten == nsectors)
+ {
+ ret = OK;
+ }
+ else if (nSectorsWritten < 0)
+ {
+ ret = nSectorsWritten;
+ }
+ }
+ }
+ return ret;
+}
+
+/****************************************************************************
+ * Name: fat_cluster2sector
+ *
+ * Desciption: Convert a cluster number to a start sector number
+ *
+ ****************************************************************************/
+
+off_t fat_cluster2sector(struct fat_mountpt_s *fs, uint32_t cluster )
+{
+ cluster -= 2;
+ if (cluster >= fs->fs_nclusters - 2)
+ {
+ return -EINVAL;
+ }
+ return cluster * fs->fs_fatsecperclus + fs->fs_database;
+}
+
+/****************************************************************************
+ * Name: fat_getcluster
+ *
+ * Desciption: Get the next cluster start from the FAT.
+ *
+ * Return: <0: error, 0:cluster unassigned, >=0: start sector of cluster
+ *
+ ****************************************************************************/
+
+off_t fat_getcluster(struct fat_mountpt_s *fs, uint32_t clusterno)
+{
+ /* Verify that the cluster number is within range */
+
+ if (clusterno >= 2 && clusterno < fs->fs_nclusters)
+ {
+ /* Okay.. Read the next cluster from the FAT. The way we will do
+ * this depends on the type of FAT filesystm we are dealing with.
+ */
+
+ switch (fs->fs_type)
+ {
+ case FSTYPE_FAT12 :
+ {
+ off_t fatsector;
+ unsigned int fatoffset;
+ unsigned int cluster;
+ unsigned int fatindex;
+
+ /* FAT12 is more complex because it has 12-bits (1.5 bytes)
+ * per FAT entry. Get the offset to the first byte:
+ */
+
+ fatoffset = (clusterno * 3) / 2;
+ fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+
+ /* Read the sector at this offset */
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+
+ break;
+ }
+
+ /* Get the first, LS byte of the cluster from the FAT */
+
+ fatindex = fatoffset & SEC_NDXMASK(fs);
+ cluster = fs->fs_buffer[fatindex];
+
+ /* With FAT12, the second byte of the cluster number may lie in
+ * a different sector than the first byte.
+ */
+
+ fatindex++;
+ if (fatindex >= fs->fs_hwsectorsize)
+ {
+ fatsector++;
+ fatindex = 0;
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+
+ break;
+ }
+ }
+
+ /* Get the second, MS byte of the cluster for 16-bits. The
+ * does not depend on the endian-ness of the target, but only
+ * on the fact that the byte stream is little-endian.
+ */
+
+ cluster |= (unsigned int)fs->fs_buffer[fatindex] << 8;
+
+ /* Now, pick out the correct 12 bit cluster start sector value */
+
+ if ((clusterno & 1) != 0)
+ {
+ /* Odd.. take the MS 12-bits */
+
+ cluster >>= 4;
+ }
+ else
+ {
+ /* Even.. take the LS 12-bits */
+
+ cluster &= 0x0fff;
+ }
+ return cluster;
+ }
+
+ case FSTYPE_FAT16 :
+ {
+ unsigned int fatoffset = 2 * clusterno;
+ off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+ unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+ break;
+ }
+ return FAT_GETFAT16(fs->fs_buffer, fatindex);
+ }
+
+ case FSTYPE_FAT32 :
+ {
+ unsigned int fatoffset = 4 * clusterno;
+ off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+ unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+ break;
+ }
+ return FAT_GETFAT32(fs->fs_buffer, fatindex) & 0x0fffffff;
+ }
+ default:
+ break;
+ }
+ }
+
+ /* There is no cluster information, or an error occured */
+
+ return (off_t)-EINVAL;
+}
+
+/****************************************************************************
+ * Name: fat_putcluster
+ *
+ * Desciption: Write a new cluster into the FAT
+ *
+ ****************************************************************************/
+
+int fat_putcluster(struct fat_mountpt_s *fs, uint32_t clusterno, off_t nextcluster)
+{
+ /* Verify that the cluster number is within range. Zero erases the cluster. */
+
+ if (clusterno == 0 || (clusterno >= 2 && clusterno < fs->fs_nclusters))
+ {
+ /* Okay.. Write the next cluster into the FAT. The way we will do
+ * this depends on the type of FAT filesystm we are dealing with.
+ */
+
+ switch (fs->fs_type)
+ {
+ case FSTYPE_FAT12 :
+ {
+ off_t fatsector;
+ unsigned int fatoffset;
+ unsigned int fatindex;
+ uint8_t value;
+
+ /* FAT12 is more complex because it has 12-bits (1.5 bytes)
+ * per FAT entry. Get the offset to the first byte:
+ */
+
+ fatoffset = (clusterno * 3) / 2;
+ fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+
+ /* Make sure that the sector at this offset is in the cache */
+
+ if (fat_fscacheread(fs, fatsector)< 0)
+ {
+ /* Read error */
+
+ break;
+ }
+
+ /* Get the LS byte first handling the 12-bit alignment within
+ * the 16-bits
+ */
+
+ fatindex = fatoffset & SEC_NDXMASK(fs);
+ if ((clusterno & 1) != 0)
+ {
+ /* Save the LS four bits of the next cluster */
+
+ value = (fs->fs_buffer[fatindex] & 0x0f) | nextcluster << 4;
+ }
+ else
+ {
+ /* Save the LS eight bits of the next cluster */
+
+ value = (uint8_t)nextcluster;
+ }
+
+ fs->fs_buffer[fatindex] = value;
+
+ /* With FAT12, the second byte of the cluster number may lie in
+ * a different sector than the first byte.
+ */
+
+ fatindex++;
+ if (fatindex >= fs->fs_hwsectorsize)
+ {
+ /* Read the next sector */
+
+ fatsector++;
+ fatindex = 0;
+
+ /* Set the dirty flag to make sure the sector that we
+ * just modified is written out.
+ */
+
+ fs->fs_dirty = true;
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+
+ break;
+ }
+ }
+
+ /* Output the MS byte first handling the 12-bit alignment within
+ * the 16-bits
+ */
+
+ if ((clusterno & 1) != 0)
+ {
+ /* Save the MS eight bits of the next cluster */
+
+ value = (uint8_t)(nextcluster >> 4);
+ }
+ else
+ {
+ /* Save the MS four bits of the next cluster */
+
+ value = (fs->fs_buffer[fatindex] & 0xf0) | ((nextcluster >> 8) & 0x0f);
+ }
+
+ fs->fs_buffer[fatindex] = value;
+ }
+ break;
+
+ case FSTYPE_FAT16 :
+ {
+ unsigned int fatoffset = 2 * clusterno;
+ off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+ unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+
+ break;
+ }
+ FAT_PUTFAT16(fs->fs_buffer, fatindex, nextcluster & 0xffff);
+ }
+ break;
+
+ case FSTYPE_FAT32 :
+ {
+ unsigned int fatoffset = 4 * clusterno;
+ off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
+ unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
+
+ if (fat_fscacheread(fs, fatsector) < 0)
+ {
+ /* Read error */
+
+ break;
+ }
+ FAT_PUTFAT32(fs->fs_buffer, fatindex, nextcluster & 0x0fffffff);
+ }
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ /* Mark the modified sector as "dirty" and return success */
+
+ fs->fs_dirty = true;
+ return OK;
+ }
+
+ return -EINVAL;
+}
+
+/****************************************************************************
+ * Name: fat_removechain
+ *
+ * Desciption: Remove an entire chain of clusters, starting with 'cluster'
+ *
+ ****************************************************************************/
+
+int fat_removechain(struct fat_mountpt_s *fs, uint32_t cluster)
+{
+ int32_t nextcluster;
+ int ret;
+
+ /* Loop while there are clusters in the chain */
+
+ while (cluster >= 2 && cluster < fs->fs_nclusters)
+ {
+ /* Get the next cluster after the current one */
+
+ nextcluster = fat_getcluster(fs, cluster);
+ if (nextcluster < 0)
+ {
+ /* Error! */
+ return nextcluster;
+ }
+
+ /* Then nullify current cluster -- removing it from the chain */
+
+ ret = fat_putcluster(fs, cluster, 0);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Update FSINFINFO data */
+
+ if (fs->fs_fsifreecount != 0xffffffff)
+ {
+ fs->fs_fsifreecount++;
+ fs->fs_fsidirty = 1;
+ }
+
+ /* Then set up to remove the next cluster */
+
+ cluster = nextcluster;
+ }
+
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_extendchain
+ *
+ * Desciption: Add a new cluster to the chain following cluster (if cluster
+ * is non-NULL). if cluster is zero, then a new chain is created.
+ *
+ * Return: <0:error, 0: no free cluster, >=2: new cluster number
+ *
+ ****************************************************************************/
+
+int32_t fat_extendchain(struct fat_mountpt_s *fs, uint32_t cluster)
+{
+ off_t startsector;
+ uint32_t newcluster;
+ uint32_t startcluster;
+ int ret;
+
+ /* The special value 0 is used when the new chain should start */
+
+ if (cluster == 0)
+ {
+ /* The FSINFO NextFree entry should be a good starting point
+ * in the search for a new cluster
+ */
+
+ startcluster = fs->fs_fsinextfree;
+ if (startcluster == 0 || startcluster >= fs->fs_nclusters)
+ {
+ /* But it is bad.. we have to start at the beginning */
+ startcluster = 1;
+ }
+ }
+ else
+ {
+ /* We are extending an existing chain. Verify that this
+ * is a valid cluster by examining its start sector.
+ */
+
+ startsector = fat_getcluster(fs, cluster);
+ if (startsector < 0)
+ {
+ /* An error occurred, return the error value */
+
+ return startsector;
+ }
+ else if (startsector < 2)
+ {
+ /* Oops.. this cluster does not exist. */
+
+ return 0;
+ }
+ else if (startsector < fs->fs_nclusters)
+ {
+ /* It is already followed by next cluster */
+
+ return startsector;
+ }
+
+ /* Okay.. it checks out */
+
+ startcluster = cluster;
+ }
+
+ /* Loop until (1) we discover that there are not free clusters
+ * (return 0), an errors occurs (return -errno), or (3) we find
+ * the next cluster (return the new cluster number).
+ */
+
+ newcluster = startcluster;
+ for (;;)
+ {
+ /* Examine the next cluster in the FAT */
+
+ newcluster++;
+ if (newcluster >= fs->fs_nclusters)
+ {
+ /* If we hit the end of the available clusters, then
+ * wrap back to the beginning because we might have
+ * started at a non-optimal place. But don't continue
+ * past the start cluster.
+ */
+
+ newcluster = 2;
+ if (newcluster > startcluster)
+ {
+ /* We are back past the starting cluster, then there
+ * is no free cluster.
+ */
+
+ return 0;
+ }
+ }
+
+ /* We have a candidate cluster. Check if the cluster number is
+ * mapped to a group of sectors.
+ */
+
+ startsector = fat_getcluster(fs, newcluster);
+ if (startsector == 0)
+ {
+ /* Found have found a free cluster break out*/
+ break;
+ }
+ else if (startsector < 0)
+ {
+ /* Some error occurred, return the error number */
+ return startsector;
+ }
+
+ /* We wrap all the back to the starting cluster? If so, then
+ * there are no free clusters.
+ */
+
+ if (newcluster == startcluster)
+ {
+ return 0;
+ }
+ }
+
+ /* We get here only if we break out with an available cluster
+ * number in 'newcluster' Now mark that cluster as in-use.
+ */
+
+ ret = fat_putcluster(fs, newcluster, 0x0fffffff);
+ if (ret < 0)
+ {
+ /* An error occurred */
+ return ret;
+ }
+
+ /* And link if to the start cluster (if any)*/
+
+ if (cluster)
+ {
+ /* There is a start cluster -- link it */
+
+ ret = fat_putcluster(fs, cluster, newcluster);
+ if (ret < 0)
+ {
+ return ret;
+ }
+ }
+
+ /* And update the FINSINFO for the next time we have to search */
+
+ fs->fs_fsinextfree = newcluster;
+ if (fs->fs_fsifreecount != 0xffffffff)
+ {
+ fs->fs_fsifreecount--;
+ fs->fs_fsidirty = 1;
+ }
+
+ /* Return then number of the new cluster that was added to the chain */
+
+ return newcluster;
+}
+
+/****************************************************************************
+ * Name: fat_nextdirentry
+ *
+ * Desciption: Read the next directory entry from the sector in cache,
+ * reading the next sector(s) in the cluster as necessary. This function
+ * must return -ENOSPC if if fails because there are no further entries
+ * available in the directory.
+ *
+ ****************************************************************************/
+
+int fat_nextdirentry(struct fat_mountpt_s *fs, struct fs_fatdir_s *dir)
+{
+ unsigned int cluster;
+ unsigned int ndx;
+
+ /* Increment the index to the next 32-byte directory entry */
+
+ ndx = dir->fd_index + 1;
+
+ /* Check if all of the directory entries in this sectory have
+ * been examined.
+ */
+
+ if ((ndx & (DIRSEC_NDIRS(fs)-1)) == 0)
+ {
+ /* Yes, then we will have to read the next sector */
+
+ dir->fd_currsector++;
+
+ /* For FAT12/16, the root directory is a group of sectors relative
+ * to the first sector of the fat volume.
+ */
+
+ if (!dir->fd_currcluster)
+ {
+ /* For FAT12/16, the boot record tells us number of 32-bit directories
+ * that are contained in the root directory. This should correspond to
+ * an even number of sectors.
+ */
+
+ if (ndx >= fs->fs_rootentcnt)
+ {
+ /* When we index past this count, we have examined all of the entries in
+ * the root directory.
+ */
+
+ return -ENOSPC;
+ }
+ }
+ else
+ {
+ /* Not a FAT12/16 root directory, check if we have examined the entire
+ * cluster comprising the directory.
+ *
+ * The current sector within the cluster is the entry number divided
+ * byte the number of entries per sector
+ */
+
+ int sector = ndx / DIRSEC_NDIRS(fs);
+
+ /* We are finished with the cluster when the last sector of the cluster
+ * has been examined.
+ */
+
+ if ((sector & (fs->fs_fatsecperclus-1)) == 0)
+ {
+ /* Get next cluster */
+
+ cluster = fat_getcluster(fs, dir->fd_currcluster);
+
+ /* Check if a valid cluster was obtained. */
+
+ if (cluster < 2 || cluster >= fs->fs_nclusters)
+ {
+ /* No, we have probably reached the end of the cluster list */
+
+ return -ENOSPC;
+ }
+
+ /* Initialize for new cluster */
+
+ dir->fd_currcluster = cluster;
+ dir->fd_currsector = fat_cluster2sector(fs, cluster);
+ }
+ }
+ }
+
+ /* Save the new index into dir->fd_currsector */
+
+ dir->fd_index = ndx;
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_dirtruncate
+ *
+ * Desciption: Truncate an existing file to zero length
+ *
+ * Assumptions: The caller holds mountpoint semaphore, fs_buffer holds
+ * the directory entry, the directory entry sector (fd_sector) is
+ * currently in the sector cache.
+ *
+ ****************************************************************************/
+
+int fat_dirtruncate(struct fat_mountpt_s *fs, struct fat_dirinfo_s *dirinfo)
+{
+ unsigned int startcluster;
+ uint32_t writetime;
+ uint8_t *direntry;
+ off_t savesector;
+ int ret;
+
+ /* Get start cluster of the file to truncate */
+
+ direntry = &fs->fs_buffer[dirinfo->fd_seq.ds_offset];
+ startcluster =
+ ((uint32_t)DIR_GETFSTCLUSTHI(direntry) << 16) |
+ DIR_GETFSTCLUSTLO(direntry);
+
+ /* Clear the cluster start value in the directory and set the file size
+ * to zero. This makes the file look empty but also have to dispose of
+ * all of the clusters in the chain.
+ */
+
+ DIR_PUTFSTCLUSTHI(direntry, 0);
+ DIR_PUTFSTCLUSTLO(direntry, 0);
+ DIR_PUTFILESIZE(direntry, 0);
+
+ /* Set the ARCHIVE attribute and update the write time */
+
+ DIR_PUTATTRIBUTES(direntry, FATATTR_ARCHIVE);
+
+ writetime = fat_systime2fattime();
+ DIR_PUTWRTTIME(direntry, writetime & 0xffff);
+ DIR_PUTWRTDATE(direntry, writetime > 16);
+
+ /* This sector needs to be written back to disk eventually */
+
+ fs->fs_dirty = true;
+
+ /* Now remove the entire cluster chain comprising the file */
+
+ savesector = fs->fs_currentsector;
+ ret = fat_removechain(fs, startcluster);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Setup FSINFO to resuse this cluster next */
+
+ fs->fs_fsinextfree = startcluster - 1;
+
+ /* Make sure that the directory is still in the cache */
+
+ return fat_fscacheread(fs, savesector);
+}
+
+/****************************************************************************
+ * Name: fat_fscacheflush
+ *
+ * Desciption: Flush any dirty sector if fs_buffer as necessary
+ *
+ ****************************************************************************/
+
+int fat_fscacheflush(struct fat_mountpt_s *fs)
+{
+ int ret;
+
+ /* Check if the fs_buffer is dirty. In this case, we will write back the
+ * contents of fs_buffer.
+ */
+
+ if (fs->fs_dirty)
+ {
+ /* Write the dirty sector */
+
+ ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Does the sector lie in the FAT region? */
+
+ if (fs->fs_currentsector >= fs->fs_fatbase &&
+ fs->fs_currentsector < fs->fs_fatbase + fs->fs_nfatsects)
+ {
+ /* Yes, then make the change in the FAT copy as well */
+ int i;
+
+ for (i = fs->fs_fatnumfats; i >= 2; i--)
+ {
+ fs->fs_currentsector += fs->fs_nfatsects;
+ ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
+ if (ret < 0)
+ {
+ return ret;
+ }
+ }
+ }
+
+ /* No longer dirty */
+
+ fs->fs_dirty = false;
+ }
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_fscacheread
+ *
+ * Desciption: Read the specified sector into the sector cache, flushing any
+ * existing dirty sectors as necessary.
+ *
+ ****************************************************************************/
+
+int fat_fscacheread(struct fat_mountpt_s *fs, off_t sector)
+{
+ int ret;
+
+ /* fs->fs_currentsector holds the current sector that is buffered in
+ * fs->fs_buffer. If the requested sector is the same as this sector, then
+ * we do nothing. Otherwise, we will have to read the new sector.
+ */
+
+ if (fs->fs_currentsector != sector)
+ {
+ /* We will need to read the new sector. First, flush the cached
+ * sector if it is dirty.
+ */
+
+ ret = fat_fscacheflush(fs);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Then read the specified sector into the cache */
+
+ ret = fat_hwread(fs, fs->fs_buffer, sector, 1);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Update the cached sector number */
+
+ fs->fs_currentsector = sector;
+ }
+
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_ffcacheflush
+ *
+ * Desciption: Flush any dirty sectors as necessary
+ *
+ ****************************************************************************/
+
+int fat_ffcacheflush(struct fat_mountpt_s *fs, struct fat_file_s *ff)
+{
+ int ret;
+
+ /* Check if the ff_buffer is dirty. In this case, we will write back the
+ * contents of ff_buffer.
+ */
+
+ if (ff->ff_cachesector &&
+ ff->ff_bflags && (FFBUFF_DIRTY|FFBUFF_VALID) == (FFBUFF_DIRTY|FFBUFF_VALID))
+ {
+ /* Write the dirty sector */
+
+ ret = fat_hwwrite(fs, ff->ff_buffer, ff->ff_cachesector, 1);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* No longer dirty, but still valid */
+
+ ff->ff_bflags &= ~FFBUFF_DIRTY;
+ }
+
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_ffcacheread
+ *
+ * Desciption: Read the specified sector into the sector cache, flushing any
+ * existing dirty sectors as necessary.
+ *
+ ****************************************************************************/
+
+int fat_ffcacheread(struct fat_mountpt_s *fs, struct fat_file_s *ff, off_t sector)
+{
+ int ret;
+
+ /* ff->ff_cachesector holds the current sector that is buffered in
+ * ff->ff_buffer. If the requested sector is the same as this sector, then
+ * we do nothing. Otherwise, we will have to read the new sector.
+ */
+
+ if (ff->ff_cachesector != sector || (ff->ff_bflags & FFBUFF_VALID) == 0)
+ {
+ /* We will need to read the new sector. First, flush the cached
+ * sector if it is dirty.
+ */
+
+ ret = fat_ffcacheflush(fs, ff);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Then read the specified sector into the cache */
+
+ ret = fat_hwread(fs, ff->ff_buffer, sector, 1);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Update the cached sector number */
+
+ ff->ff_cachesector = sector;
+ ff->ff_bflags |= FFBUFF_VALID;
+ }
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_ffcacheread
+ *
+ * Desciption: Invalidate the current file buffer contents
+ *
+ ****************************************************************************/
+
+int fat_ffcacheinvalidate(struct fat_mountpt_s *fs, struct fat_file_s *ff)
+{
+ int ret;
+
+ /* Is there anything valid in the buffer now? */
+
+ if ((ff->ff_bflags & FFBUFF_VALID) != 0)
+ {
+ /* We will invalidate the buffered sector */
+
+ ret = fat_ffcacheflush(fs, ff);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Then discard the current cache contents */
+
+ ff->ff_bflags &= ~FFBUFF_VALID;
+ ff->ff_cachesector = 0;
+ }
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_updatefsinfo
+ *
+ * Desciption: Flush evertyhing buffered for the mountpoint and update
+ * the FSINFO sector, if appropriate
+ *
+ ****************************************************************************/
+
+int fat_updatefsinfo(struct fat_mountpt_s *fs)
+{
+ int ret;
+
+ /* Flush the fs_buffer if it is dirty */
+
+ ret = fat_fscacheflush(fs);
+ if (ret == OK)
+ {
+ /* The FSINFO sector only has to be update for the case of a FAT32 file
+ * system. Check if the file system type.. If this is a FAT32 file
+ * system then the fs_fsidirty flag will indicate if the FSINFO sector
+ * needs to be re-written.
+ */
+
+ if (fs->fs_type == FSTYPE_FAT32 && fs->fs_fsidirty)
+ {
+ /* Create an image of the FSINFO sector in the fs_buffer */
+
+ memset(fs->fs_buffer, 0, fs->fs_hwsectorsize);
+ FSI_PUTLEADSIG(fs->fs_buffer, 0x41615252);
+ FSI_PUTSTRUCTSIG(fs->fs_buffer, 0x61417272);
+ FSI_PUTFREECOUNT(fs->fs_buffer, fs->fs_fsifreecount);
+ FSI_PUTNXTFREE(fs->fs_buffer, fs->fs_fsinextfree);
+ FSI_PUTTRAILSIG(fs->fs_buffer, BOOT_SIGNATURE32);
+
+ /* Then flush this to disk */
+
+ fs->fs_currentsector = fs->fs_fsinfo;
+ fs->fs_dirty = true;
+ ret = fat_fscacheflush(fs);
+
+ /* No longer dirty */
+
+ fs->fs_fsidirty = false;
+ }
+ }
+ return ret;
+}
+
+/****************************************************************************
+ * Name: fat_nfreeclusters
+ *
+ * Desciption: Get the number of free clusters
+ *
+ ****************************************************************************/
+
+int fat_nfreeclusters(struct fat_mountpt_s *fs, off_t *pfreeclusters)
+{
+ uint32_t nfreeclusters;
+
+ /* If number of the first free cluster is valid, then just return that value. */
+
+ if (fs->fs_fsifreecount <= fs->fs_nclusters - 2)
+ {
+ *pfreeclusters = fs->fs_fsifreecount;
+ return OK;
+ }
+
+ /* Otherwise, we will have to count the number of free clusters */
+
+ nfreeclusters = 0;
+ if (fs->fs_type == FSTYPE_FAT12)
+ {
+ off_t sector;
+
+ /* Examine every cluster in the fat */
+
+ for (sector = 2; sector < fs->fs_nclusters; sector++)
+ {
+
+ /* If the cluster is unassigned, then increment the count of free clusters */
+
+ if ((uint16_t)fat_getcluster(fs, sector) == 0)
+ {
+ nfreeclusters++;
+ }
+ }
+ }
+ else
+ {
+ unsigned int cluster;
+ off_t fatsector;
+ unsigned int offset;
+ int ret;
+
+ fatsector = fs->fs_fatbase;
+ offset = fs->fs_hwsectorsize;
+
+ /* Examine each cluster in the fat */
+
+ for (cluster = fs->fs_nclusters; cluster > 0; cluster--)
+ {
+ /* If we are starting a new sector, then read the new sector in fs_buffer */
+
+ if (offset >= fs->fs_hwsectorsize)
+ {
+ ret = fat_fscacheread(fs, fatsector++);
+ if (ret < 0)
+ {
+ return ret;
+ }
+
+ /* Reset the offset to the next FAT entry.
+ * Increment the sector number to read next time around.
+ */
+
+ offset = 0;
+ fatsector++;
+ }
+
+ /* FAT16 and FAT32 differ only on the size of each cluster start
+ * sector number in the FAT.
+ */
+
+ if (fs->fs_type == FSTYPE_FAT16)
+ {
+ if (FAT_GETFAT16(fs->fs_buffer, offset) == 0)
+ {
+ nfreeclusters++;
+ }
+ offset += 2;
+ }
+ else
+ {
+ if (FAT_GETFAT32(fs->fs_buffer, offset) == 0)
+ {
+ nfreeclusters++;
+ }
+
+ offset += 4;
+ }
+ }
+ }
+
+ fs->fs_fsifreecount = nfreeclusters;
+ if (fs->fs_type == FSTYPE_FAT32)
+ {
+ fs->fs_fsidirty = true;
+ }
+
+ *pfreeclusters = nfreeclusters;
+ return OK;
+}
+
+/****************************************************************************
+ * Name: fat_nfreeclusters
+ *
+ * Desciption:
+ * Given the file position, set the correct current sector to access.
+ *
+ ****************************************************************************/
+
+int fat_currentsector(struct fat_mountpt_s *fs, struct fat_file_s *ff,
+ off_t position)
+{
+ int sectoroffset;
+
+ if (position <= ff->ff_size )
+ {
+ /* sectoroffset is the sector number offset into the current cluster */
+
+ sectoroffset = SEC_NSECTORS(fs, position) & CLUS_NDXMASK(fs);
+
+ /* The current cluster is the first sector of the cluster plus
+ * the sector offset
+ */
+
+ ff->ff_currentsector = fat_cluster2sector(fs, ff->ff_currentcluster)
+ + sectoroffset;
+
+ /* The remainder is the number of sectors left in the cluster to be
+ * read/written
+ */
+
+ ff->ff_sectorsincluster = fs->fs_fatsecperclus - sectoroffset;
+
+ fvdbg("position=%d currentsector=%d sectorsincluster=%d\n",
+ position, ff->ff_currentsector, ff->ff_sectorsincluster);
+
+ return OK;
+ }
+
+ /* The position does not lie within the file */
+
+ return -ENOSPC;
+}
+
+