From 01e427b17c161d8adaa38d6bdb91aecb434451f2 Mon Sep 17 00:00:00 2001 From: px4dev Date: Fri, 26 Apr 2013 16:14:32 -0700 Subject: Merge working changes into export-build branch. --- src/modules/commander/commander.c | 2181 +++++++++++++++++++++++++++++++++++++ 1 file changed, 2181 insertions(+) create mode 100644 src/modules/commander/commander.c (limited to 'src/modules/commander/commander.c') diff --git a/src/modules/commander/commander.c b/src/modules/commander/commander.c new file mode 100644 index 000000000..7c0a25f86 --- /dev/null +++ b/src/modules/commander/commander.c @@ -0,0 +1,2181 @@ +/**************************************************************************** + * + * Copyright (C) 2012 PX4 Development Team. All rights reserved. + * Author: Petri Tanskanen + * Lorenz Meier + * Thomas Gubler + * Julian Oes + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * 3. Neither the name PX4 nor the names of its contributors may be + * used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS + * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED + * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************/ + +/** + * @file commander.c + * Main system state machine implementation. + * + * @author Petri Tanskanen + * @author Lorenz Meier + * @author Thomas Gubler + * @author Julian Oes + * + */ + +#include "commander.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "state_machine_helper.h" +#include "systemlib/systemlib.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +/* XXX MOVE CALIBRATION TO SENSORS APP THREAD */ +#include +#include +#include +#include + +#include "calibration_routines.h" + + +PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */ +//PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */ +PARAM_DEFINE_FLOAT(TRIM_ROLL, 0.0f); +PARAM_DEFINE_FLOAT(TRIM_PITCH, 0.0f); +PARAM_DEFINE_FLOAT(TRIM_YAW, 0.0f); + +#include +extern struct system_load_s system_load; + +/* Decouple update interval and hysteris counters, all depends on intervals */ +#define COMMANDER_MONITORING_INTERVAL 50000 +#define COMMANDER_MONITORING_LOOPSPERMSEC (1/(COMMANDER_MONITORING_INTERVAL/1000.0f)) +#define LOW_VOLTAGE_BATTERY_COUNTER_LIMIT (LOW_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) +#define CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT (CRITICAL_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) + +#define STICK_ON_OFF_LIMIT 0.75f +#define STICK_THRUST_RANGE 1.0f +#define STICK_ON_OFF_HYSTERESIS_TIME_MS 1000 +#define STICK_ON_OFF_COUNTER_LIMIT (STICK_ON_OFF_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) + +#define GPS_FIX_TYPE_2D 2 +#define GPS_FIX_TYPE_3D 3 +#define GPS_QUALITY_GOOD_HYSTERIS_TIME_MS 5000 +#define GPS_QUALITY_GOOD_COUNTER_LIMIT (GPS_QUALITY_GOOD_HYSTERIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) + +/* File descriptors */ +static int leds; +static int buzzer; +static int mavlink_fd; +static bool commander_initialized = false; +static struct vehicle_status_s current_status; /**< Main state machine */ +static orb_advert_t stat_pub; + +// static uint16_t nofix_counter = 0; +// static uint16_t gotfix_counter = 0; + +static unsigned int failsafe_lowlevel_timeout_ms; + +static bool thread_should_exit = false; /**< daemon exit flag */ +static bool thread_running = false; /**< daemon status flag */ +static int daemon_task; /**< Handle of daemon task / thread */ + +/* pthread loops */ +static void *orb_receive_loop(void *arg); + +__EXPORT int commander_main(int argc, char *argv[]); + +/** + * Mainloop of commander. + */ +int commander_thread_main(int argc, char *argv[]); + +static int buzzer_init(void); +static void buzzer_deinit(void); +static int led_init(void); +static void led_deinit(void); +static int led_toggle(int led); +static int led_on(int led); +static int led_off(int led); +static void do_gyro_calibration(int status_pub, struct vehicle_status_s *status); +static void do_mag_calibration(int status_pub, struct vehicle_status_s *status); +static void do_rc_calibration(int status_pub, struct vehicle_status_s *status); +static void do_accel_calibration(int status_pub, struct vehicle_status_s *status); +static void handle_command(int status_pub, struct vehicle_status_s *current_status, struct vehicle_command_s *cmd); + +int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state); + + + +/** + * Print the correct usage. + */ +static void usage(const char *reason); + +/** + * Sort calibration values. + * + * Sorts the calibration values with bubble sort. + * + * @param a The array to sort + * @param n The number of entries in the array + */ +// static void cal_bsort(float a[], int n); + +static int buzzer_init() +{ + buzzer = open("/dev/tone_alarm", O_WRONLY); + + if (buzzer < 0) { + warnx("Buzzer: open fail\n"); + return ERROR; + } + + return 0; +} + +static void buzzer_deinit() +{ + close(buzzer); +} + + +static int led_init() +{ + leds = open(LED_DEVICE_PATH, 0); + + if (leds < 0) { + warnx("LED: open fail\n"); + return ERROR; + } + + if (ioctl(leds, LED_ON, LED_BLUE) || ioctl(leds, LED_ON, LED_AMBER)) { + warnx("LED: ioctl fail\n"); + return ERROR; + } + + return 0; +} + +static void led_deinit() +{ + close(leds); +} + +static int led_toggle(int led) +{ + static int last_blue = LED_ON; + static int last_amber = LED_ON; + + if (led == LED_BLUE) last_blue = (last_blue == LED_ON) ? LED_OFF : LED_ON; + + if (led == LED_AMBER) last_amber = (last_amber == LED_ON) ? LED_OFF : LED_ON; + + return ioctl(leds, ((led == LED_BLUE) ? last_blue : last_amber), led); +} + +static int led_on(int led) +{ + return ioctl(leds, LED_ON, led); +} + +static int led_off(int led) +{ + return ioctl(leds, LED_OFF, led); +} + +enum AUDIO_PATTERN { + AUDIO_PATTERN_ERROR = 2, + AUDIO_PATTERN_NOTIFY_POSITIVE = 3, + AUDIO_PATTERN_NOTIFY_NEUTRAL = 4, + AUDIO_PATTERN_NOTIFY_NEGATIVE = 5, + AUDIO_PATTERN_NOTIFY_CHARGE = 6 +}; + +int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state) +{ + + /* Trigger alarm if going into any error state */ + if (((new_state == SYSTEM_STATE_GROUND_ERROR) && (old_state != SYSTEM_STATE_GROUND_ERROR)) || + ((new_state == SYSTEM_STATE_MISSION_ABORT) && (old_state != SYSTEM_STATE_MISSION_ABORT))) { + ioctl(buzzer, TONE_SET_ALARM, 0); + ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_ERROR); + } + + /* Trigger neutral on arming / disarming */ + if (((new_state == SYSTEM_STATE_GROUND_READY) && (old_state != SYSTEM_STATE_GROUND_READY))) { + ioctl(buzzer, TONE_SET_ALARM, 0); + ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_NOTIFY_NEUTRAL); + } + + /* Trigger Tetris on being bored */ + + return 0; +} + +void tune_confirm(void) +{ + ioctl(buzzer, TONE_SET_ALARM, 3); +} + +void tune_error(void) +{ + ioctl(buzzer, TONE_SET_ALARM, 4); +} + +void do_rc_calibration(int status_pub, struct vehicle_status_s *status) +{ + if (current_status.offboard_control_signal_lost) { + mavlink_log_critical(mavlink_fd, "TRIM CAL: ABORT. No RC signal."); + return; + } + + int sub_man = orb_subscribe(ORB_ID(manual_control_setpoint)); + struct manual_control_setpoint_s sp; + orb_copy(ORB_ID(manual_control_setpoint), sub_man, &sp); + + /* set parameters */ + + float p = sp.roll; + param_set(param_find("TRIM_ROLL"), &p); + p = sp.pitch; + param_set(param_find("TRIM_PITCH"), &p); + p = sp.yaw; + param_set(param_find("TRIM_YAW"), &p); + + /* store to permanent storage */ + /* auto-save to EEPROM */ + int save_ret = param_save_default(); + + if (save_ret != 0) { + mavlink_log_critical(mavlink_fd, "TRIM CAL: WARN: auto-save of params failed"); + } + + mavlink_log_info(mavlink_fd, "trim calibration done"); +} + +void do_mag_calibration(int status_pub, struct vehicle_status_s *status) +{ + + /* set to mag calibration mode */ + status->flag_preflight_mag_calibration = true; + state_machine_publish(status_pub, status, mavlink_fd); + + int sub_mag = orb_subscribe(ORB_ID(sensor_mag)); + struct mag_report mag; + + /* 45 seconds */ + uint64_t calibration_interval = 45 * 1000 * 1000; + + /* maximum 2000 values */ + const unsigned int calibration_maxcount = 500; + unsigned int calibration_counter = 0; + + /* limit update rate to get equally spaced measurements over time (in ms) */ + orb_set_interval(sub_mag, (calibration_interval / 1000) / calibration_maxcount); + + // XXX old cal + // * FLT_MIN is not the most negative float number, + // * but the smallest number by magnitude float can + // * represent. Use -FLT_MAX to initialize the most + // * negative number + + // float mag_max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; + // float mag_min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; + + int fd = open(MAG_DEVICE_PATH, O_RDONLY); + + /* erase old calibration */ + struct mag_scale mscale_null = { + 0.0f, + 1.0f, + 0.0f, + 1.0f, + 0.0f, + 1.0f, + }; + + if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) { + warn("WARNING: failed to set scale / offsets for mag"); + mavlink_log_info(mavlink_fd, "failed to set scale / offsets for mag"); + } + + /* calibrate range */ + if (OK != ioctl(fd, MAGIOCCALIBRATE, fd)) { + warnx("failed to calibrate scale"); + } + + close(fd); + + /* calibrate offsets */ + + // uint64_t calibration_start = hrt_absolute_time(); + + uint64_t axis_deadline = hrt_absolute_time(); + uint64_t calibration_deadline = hrt_absolute_time() + calibration_interval; + + const char axislabels[3] = { 'X', 'Y', 'Z'}; + int axis_index = -1; + + float *x = (float *)malloc(sizeof(float) * calibration_maxcount); + float *y = (float *)malloc(sizeof(float) * calibration_maxcount); + float *z = (float *)malloc(sizeof(float) * calibration_maxcount); + + if (x == NULL || y == NULL || z == NULL) { + warnx("mag cal failed: out of memory"); + mavlink_log_info(mavlink_fd, "mag cal failed: out of memory"); + warnx("x:%p y:%p z:%p\n", x, y, z); + return; + } + + tune_confirm(); + sleep(2); + tune_confirm(); + + while (hrt_absolute_time() < calibration_deadline && + calibration_counter < calibration_maxcount) { + + /* wait blocking for new data */ + struct pollfd fds[1] = { { .fd = sub_mag, .events = POLLIN } }; + + /* user guidance */ + if (hrt_absolute_time() >= axis_deadline && + axis_index < 3) { + + axis_index++; + + char buf[50]; + sprintf(buf, "Please rotate around %c", axislabels[axis_index]); + mavlink_log_info(mavlink_fd, buf); + tune_confirm(); + + axis_deadline += calibration_interval / 3; + } + + if (!(axis_index < 3)) { + break; + } + + // int axis_left = (int64_t)axis_deadline - (int64_t)hrt_absolute_time(); + + // if ((axis_left / 1000) == 0 && axis_left > 0) { + // char buf[50]; + // sprintf(buf, "[cmd] %d seconds left for axis %c", axis_left, axislabels[axis_index]); + // mavlink_log_info(mavlink_fd, buf); + // } + + int poll_ret = poll(fds, 1, 1000); + + if (poll_ret) { + orb_copy(ORB_ID(sensor_mag), sub_mag, &mag); + + x[calibration_counter] = mag.x; + y[calibration_counter] = mag.y; + z[calibration_counter] = mag.z; + + /* get min/max values */ + + // if (mag.x < mag_min[0]) { + // mag_min[0] = mag.x; + // } + // else if (mag.x > mag_max[0]) { + // mag_max[0] = mag.x; + // } + + // if (raw.magnetometer_ga[1] < mag_min[1]) { + // mag_min[1] = raw.magnetometer_ga[1]; + // } + // else if (raw.magnetometer_ga[1] > mag_max[1]) { + // mag_max[1] = raw.magnetometer_ga[1]; + // } + + // if (raw.magnetometer_ga[2] < mag_min[2]) { + // mag_min[2] = raw.magnetometer_ga[2]; + // } + // else if (raw.magnetometer_ga[2] > mag_max[2]) { + // mag_max[2] = raw.magnetometer_ga[2]; + // } + + calibration_counter++; + + } else if (poll_ret == 0) { + /* any poll failure for 1s is a reason to abort */ + mavlink_log_info(mavlink_fd, "mag cal canceled (timed out)"); + break; + } + } + + float sphere_x; + float sphere_y; + float sphere_z; + float sphere_radius; + + sphere_fit_least_squares(x, y, z, calibration_counter, 100, 0.0f, &sphere_x, &sphere_y, &sphere_z, &sphere_radius); + + free(x); + free(y); + free(z); + + if (isfinite(sphere_x) && isfinite(sphere_y) && isfinite(sphere_z)) { + + fd = open(MAG_DEVICE_PATH, 0); + + struct mag_scale mscale; + + if (OK != ioctl(fd, MAGIOCGSCALE, (long unsigned int)&mscale)) + warn("WARNING: failed to get scale / offsets for mag"); + + mscale.x_offset = sphere_x; + mscale.y_offset = sphere_y; + mscale.z_offset = sphere_z; + + if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale)) + warn("WARNING: failed to set scale / offsets for mag"); + + close(fd); + + /* announce and set new offset */ + + if (param_set(param_find("SENS_MAG_XOFF"), &(mscale.x_offset))) { + warnx("Setting X mag offset failed!\n"); + } + + if (param_set(param_find("SENS_MAG_YOFF"), &(mscale.y_offset))) { + warnx("Setting Y mag offset failed!\n"); + } + + if (param_set(param_find("SENS_MAG_ZOFF"), &(mscale.z_offset))) { + warnx("Setting Z mag offset failed!\n"); + } + + if (param_set(param_find("SENS_MAG_XSCALE"), &(mscale.x_scale))) { + warnx("Setting X mag scale failed!\n"); + } + + if (param_set(param_find("SENS_MAG_YSCALE"), &(mscale.y_scale))) { + warnx("Setting Y mag scale failed!\n"); + } + + if (param_set(param_find("SENS_MAG_ZSCALE"), &(mscale.z_scale))) { + warnx("Setting Z mag scale failed!\n"); + } + + /* auto-save to EEPROM */ + int save_ret = param_save_default(); + + if (save_ret != 0) { + warn("WARNING: auto-save of params to storage failed"); + mavlink_log_info(mavlink_fd, "FAILED storing calibration"); + } + + warnx("\tscale: %.6f %.6f %.6f\n \toffset: %.6f %.6f %.6f\nradius: %.6f GA\n", + (double)mscale.x_scale, (double)mscale.y_scale, (double)mscale.z_scale, + (double)mscale.x_offset, (double)mscale.y_offset, (double)mscale.z_offset, (double)sphere_radius); + + char buf[52]; + sprintf(buf, "mag off: x:%.2f y:%.2f z:%.2f Ga", (double)mscale.x_offset, + (double)mscale.y_offset, (double)mscale.z_offset); + mavlink_log_info(mavlink_fd, buf); + + sprintf(buf, "mag scale: x:%.2f y:%.2f z:%.2f", (double)mscale.x_scale, + (double)mscale.y_scale, (double)mscale.z_scale); + mavlink_log_info(mavlink_fd, buf); + + mavlink_log_info(mavlink_fd, "mag calibration done"); + + tune_confirm(); + sleep(2); + tune_confirm(); + sleep(2); + /* third beep by cal end routine */ + + } else { + mavlink_log_info(mavlink_fd, "mag calibration FAILED (NaN in sphere fit)"); + } + + /* disable calibration mode */ + status->flag_preflight_mag_calibration = false; + state_machine_publish(status_pub, status, mavlink_fd); + + close(sub_mag); +} + +void do_gyro_calibration(int status_pub, struct vehicle_status_s *status) +{ + /* set to gyro calibration mode */ + status->flag_preflight_gyro_calibration = true; + state_machine_publish(status_pub, status, mavlink_fd); + + const int calibration_count = 5000; + + int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); + struct sensor_combined_s raw; + + int calibration_counter = 0; + float gyro_offset[3] = {0.0f, 0.0f, 0.0f}; + + /* set offsets to zero */ + int fd = open(GYRO_DEVICE_PATH, 0); + struct gyro_scale gscale_null = { + 0.0f, + 1.0f, + 0.0f, + 1.0f, + 0.0f, + 1.0f, + }; + + if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale_null)) + warn("WARNING: failed to set scale / offsets for gyro"); + + close(fd); + + while (calibration_counter < calibration_count) { + + /* wait blocking for new data */ + struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; + + int poll_ret = poll(fds, 1, 1000); + + if (poll_ret) { + orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); + gyro_offset[0] += raw.gyro_rad_s[0]; + gyro_offset[1] += raw.gyro_rad_s[1]; + gyro_offset[2] += raw.gyro_rad_s[2]; + calibration_counter++; + + } else if (poll_ret == 0) { + /* any poll failure for 1s is a reason to abort */ + mavlink_log_info(mavlink_fd, "gyro calibration aborted, retry"); + return; + } + } + + gyro_offset[0] = gyro_offset[0] / calibration_count; + gyro_offset[1] = gyro_offset[1] / calibration_count; + gyro_offset[2] = gyro_offset[2] / calibration_count; + + /* exit gyro calibration mode */ + status->flag_preflight_gyro_calibration = false; + state_machine_publish(status_pub, status, mavlink_fd); + + if (isfinite(gyro_offset[0]) && isfinite(gyro_offset[1]) && isfinite(gyro_offset[2])) { + + if (param_set(param_find("SENS_GYRO_XOFF"), &(gyro_offset[0])) + || param_set(param_find("SENS_GYRO_YOFF"), &(gyro_offset[1])) + || param_set(param_find("SENS_GYRO_ZOFF"), &(gyro_offset[2]))) { + mavlink_log_critical(mavlink_fd, "Setting gyro offsets failed!"); + } + + /* set offsets to actual value */ + fd = open(GYRO_DEVICE_PATH, 0); + struct gyro_scale gscale = { + gyro_offset[0], + 1.0f, + gyro_offset[1], + 1.0f, + gyro_offset[2], + 1.0f, + }; + + if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale)) + warn("WARNING: failed to set scale / offsets for gyro"); + + close(fd); + + /* auto-save to EEPROM */ + int save_ret = param_save_default(); + + if (save_ret != 0) { + warn("WARNING: auto-save of params to storage failed"); + } + + // char buf[50]; + // sprintf(buf, "cal: x:%8.4f y:%8.4f z:%8.4f", (double)gyro_offset[0], (double)gyro_offset[1], (double)gyro_offset[2]); + // mavlink_log_info(mavlink_fd, buf); + mavlink_log_info(mavlink_fd, "gyro calibration done"); + + tune_confirm(); + sleep(2); + tune_confirm(); + sleep(2); + /* third beep by cal end routine */ + + } else { + mavlink_log_info(mavlink_fd, "gyro calibration FAILED (NaN)"); + } + + close(sub_sensor_combined); +} + +void do_accel_calibration(int status_pub, struct vehicle_status_s *status) +{ + /* announce change */ + + mavlink_log_info(mavlink_fd, "keep it level and still"); + /* set to accel calibration mode */ + status->flag_preflight_accel_calibration = true; + state_machine_publish(status_pub, status, mavlink_fd); + + const int calibration_count = 2500; + + int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); + struct sensor_combined_s raw; + + int calibration_counter = 0; + float accel_offset[3] = {0.0f, 0.0f, 0.0f}; + + int fd = open(ACCEL_DEVICE_PATH, 0); + struct accel_scale ascale_null = { + 0.0f, + 1.0f, + 0.0f, + 1.0f, + 0.0f, + 1.0f, + }; + + if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale_null)) + warn("WARNING: failed to set scale / offsets for accel"); + + close(fd); + + while (calibration_counter < calibration_count) { + + /* wait blocking for new data */ + struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; + + int poll_ret = poll(fds, 1, 1000); + + if (poll_ret) { + orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); + accel_offset[0] += raw.accelerometer_m_s2[0]; + accel_offset[1] += raw.accelerometer_m_s2[1]; + accel_offset[2] += raw.accelerometer_m_s2[2]; + calibration_counter++; + + } else if (poll_ret == 0) { + /* any poll failure for 1s is a reason to abort */ + mavlink_log_info(mavlink_fd, "acceleration calibration aborted"); + return; + } + } + + accel_offset[0] = accel_offset[0] / calibration_count; + accel_offset[1] = accel_offset[1] / calibration_count; + accel_offset[2] = accel_offset[2] / calibration_count; + + if (isfinite(accel_offset[0]) && isfinite(accel_offset[1]) && isfinite(accel_offset[2])) { + + /* add the removed length from x / y to z, since we induce a scaling issue else */ + float total_len = sqrtf(accel_offset[0] * accel_offset[0] + accel_offset[1] * accel_offset[1] + accel_offset[2] * accel_offset[2]); + + /* if length is correct, zero results here */ + accel_offset[2] = accel_offset[2] + total_len; + + float scale = 9.80665f / total_len; + + if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offset[0])) + || param_set(param_find("SENS_ACC_YOFF"), &(accel_offset[1])) + || param_set(param_find("SENS_ACC_ZOFF"), &(accel_offset[2])) + || param_set(param_find("SENS_ACC_XSCALE"), &(scale)) + || param_set(param_find("SENS_ACC_YSCALE"), &(scale)) + || param_set(param_find("SENS_ACC_ZSCALE"), &(scale))) { + mavlink_log_critical(mavlink_fd, "Setting offs or scale failed!"); + } + + fd = open(ACCEL_DEVICE_PATH, 0); + struct accel_scale ascale = { + accel_offset[0], + scale, + accel_offset[1], + scale, + accel_offset[2], + scale, + }; + + if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale)) + warn("WARNING: failed to set scale / offsets for accel"); + + close(fd); + + /* auto-save to EEPROM */ + int save_ret = param_save_default(); + + if (save_ret != 0) { + warn("WARNING: auto-save of params to storage failed"); + } + + //char buf[50]; + //sprintf(buf, "[cmd] accel cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0], (double)accel_offset[1], (double)accel_offset[2]); + //mavlink_log_info(mavlink_fd, buf); + mavlink_log_info(mavlink_fd, "accel calibration done"); + + tune_confirm(); + sleep(2); + tune_confirm(); + sleep(2); + /* third beep by cal end routine */ + + } else { + mavlink_log_info(mavlink_fd, "accel calibration FAILED (NaN)"); + } + + /* exit accel calibration mode */ + status->flag_preflight_accel_calibration = false; + state_machine_publish(status_pub, status, mavlink_fd); + + close(sub_sensor_combined); +} + +void do_airspeed_calibration(int status_pub, struct vehicle_status_s *status) +{ + /* announce change */ + + mavlink_log_info(mavlink_fd, "keep it still"); + /* set to accel calibration mode */ + status->flag_preflight_airspeed_calibration = true; + state_machine_publish(status_pub, status, mavlink_fd); + + const int calibration_count = 2500; + + int sub_differential_pressure = orb_subscribe(ORB_ID(differential_pressure)); + struct differential_pressure_s differential_pressure; + + int calibration_counter = 0; + float airspeed_offset = 0.0f; + + while (calibration_counter < calibration_count) { + + /* wait blocking for new data */ + struct pollfd fds[1] = { { .fd = sub_differential_pressure, .events = POLLIN } }; + + int poll_ret = poll(fds, 1, 1000); + + if (poll_ret) { + orb_copy(ORB_ID(differential_pressure), sub_differential_pressure, &differential_pressure); + airspeed_offset += differential_pressure.voltage; + calibration_counter++; + + } else if (poll_ret == 0) { + /* any poll failure for 1s is a reason to abort */ + mavlink_log_info(mavlink_fd, "airspeed calibration aborted"); + return; + } + } + + airspeed_offset = airspeed_offset / calibration_count; + + if (isfinite(airspeed_offset)) { + + if (param_set(param_find("SENS_VAIR_OFF"), &(airspeed_offset))) { + mavlink_log_critical(mavlink_fd, "Setting offs failed!"); + } + + /* auto-save to EEPROM */ + int save_ret = param_save_default(); + + if (save_ret != 0) { + warn("WARNING: auto-save of params to storage failed"); + } + + //char buf[50]; + //sprintf(buf, "[cmd] accel cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0], (double)accel_offset[1], (double)accel_offset[2]); + //mavlink_log_info(mavlink_fd, buf); + mavlink_log_info(mavlink_fd, "airspeed calibration done"); + + tune_confirm(); + sleep(2); + tune_confirm(); + sleep(2); + /* third beep by cal end routine */ + + } else { + mavlink_log_info(mavlink_fd, "airspeed calibration FAILED (NaN)"); + } + + /* exit airspeed calibration mode */ + status->flag_preflight_airspeed_calibration = false; + state_machine_publish(status_pub, status, mavlink_fd); + + close(sub_differential_pressure); +} + + + +void handle_command(int status_pub, struct vehicle_status_s *current_vehicle_status, struct vehicle_command_s *cmd) +{ + /* result of the command */ + uint8_t result = VEHICLE_CMD_RESULT_UNSUPPORTED; + + /* announce command handling */ + tune_confirm(); + + + /* supported command handling start */ + + /* request to set different system mode */ + switch (cmd->command) { + case VEHICLE_CMD_DO_SET_MODE: { + if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, (uint8_t)cmd->param1)) { + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + result = VEHICLE_CMD_RESULT_DENIED; + } + } + break; + + case VEHICLE_CMD_COMPONENT_ARM_DISARM: { + /* request to arm */ + if ((int)cmd->param1 == 1) { + if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + result = VEHICLE_CMD_RESULT_DENIED; + } + + /* request to disarm */ + + } else if ((int)cmd->param1 == 0) { + if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + result = VEHICLE_CMD_RESULT_DENIED; + } + } + } + break; + + /* request for an autopilot reboot */ + case VEHICLE_CMD_PREFLIGHT_REBOOT_SHUTDOWN: { + if ((int)cmd->param1 == 1) { + if (OK == do_state_update(status_pub, current_vehicle_status, mavlink_fd, SYSTEM_STATE_REBOOT)) { + /* SPECIAL CASE: SYSTEM WILL NEVER RETURN HERE */ + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + /* system may return here */ + result = VEHICLE_CMD_RESULT_DENIED; + } + } + } + break; + +// /* request to land */ +// case VEHICLE_CMD_NAV_LAND: +// { +// //TODO: add check if landing possible +// //TODO: add landing maneuver +// +// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_ARMED)) { +// result = VEHICLE_CMD_RESULT_ACCEPTED; +// } } +// break; +// +// /* request to takeoff */ +// case VEHICLE_CMD_NAV_TAKEOFF: +// { +// //TODO: add check if takeoff possible +// //TODO: add takeoff maneuver +// +// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_AUTO)) { +// result = VEHICLE_CMD_RESULT_ACCEPTED; +// } +// } +// break; +// + /* preflight calibration */ + case VEHICLE_CMD_PREFLIGHT_CALIBRATION: { + bool handled = false; + + /* gyro calibration */ + if ((int)(cmd->param1) == 1) { + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "starting gyro cal"); + tune_confirm(); + do_gyro_calibration(status_pub, ¤t_status); + mavlink_log_info(mavlink_fd, "finished gyro cal"); + tune_confirm(); + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING gyro cal"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* magnetometer calibration */ + if ((int)(cmd->param2) == 1) { + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "starting mag cal"); + tune_confirm(); + do_mag_calibration(status_pub, ¤t_status); + mavlink_log_info(mavlink_fd, "finished mag cal"); + tune_confirm(); + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING mag cal"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* zero-altitude pressure calibration */ + if ((int)(cmd->param3) == 1) { + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "zero altitude cal. not implemented"); + tune_confirm(); + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING altitude calibration"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* trim calibration */ + if ((int)(cmd->param4) == 1) { + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "starting trim cal"); + tune_confirm(); + do_rc_calibration(status_pub, ¤t_status); + mavlink_log_info(mavlink_fd, "finished trim cal"); + tune_confirm(); + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING trim cal"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* accel calibration */ + if ((int)(cmd->param5) == 1) { + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "CMD starting accel cal"); + tune_confirm(); + do_accel_calibration(status_pub, ¤t_status); + tune_confirm(); + mavlink_log_info(mavlink_fd, "CMD finished accel cal"); + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING accel cal"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* airspeed calibration */ + if ((int)(cmd->param6) == 1) { //xxx: this is not defined by the mavlink protocol + /* transition to calibration state */ + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); + + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { + mavlink_log_info(mavlink_fd, "CMD starting airspeed cal"); + tune_confirm(); + do_airspeed_calibration(status_pub, ¤t_status); + tune_confirm(); + mavlink_log_info(mavlink_fd, "CMD finished airspeed cal"); + do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + mavlink_log_critical(mavlink_fd, "REJECTING airspeed cal"); + result = VEHICLE_CMD_RESULT_DENIED; + } + + handled = true; + } + + /* none found */ + if (!handled) { + //warnx("refusing unsupported calibration request\n"); + mavlink_log_critical(mavlink_fd, "CMD refusing unsup. calib. request"); + result = VEHICLE_CMD_RESULT_UNSUPPORTED; + } + } + break; + + case VEHICLE_CMD_PREFLIGHT_STORAGE: { + if (current_status.flag_system_armed && + ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) || + (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) || + (current_status.system_type == VEHICLE_TYPE_OCTOROTOR))) { + /* do not perform expensive memory tasks on multirotors in flight */ + // XXX this is over-safe, as soon as cmd is in low prio thread this can be allowed + mavlink_log_info(mavlink_fd, "REJECTING save cmd while multicopter armed"); + + } else { + + // XXX move this to LOW PRIO THREAD of commander app + /* Read all parameters from EEPROM to RAM */ + + if (((int)(cmd->param1)) == 0) { + + /* read all parameters from EEPROM to RAM */ + int read_ret = param_load_default(); + + if (read_ret == OK) { + //warnx("[mavlink pm] Loaded EEPROM params in RAM\n"); + mavlink_log_info(mavlink_fd, "OK loading params from"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else if (read_ret == 1) { + mavlink_log_info(mavlink_fd, "OK no changes in"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + if (read_ret < -1) { + mavlink_log_info(mavlink_fd, "ERR loading params from"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + + } else { + mavlink_log_info(mavlink_fd, "ERR no param file named"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + } + + result = VEHICLE_CMD_RESULT_FAILED; + } + + } else if (((int)(cmd->param1)) == 1) { + + /* write all parameters from RAM to EEPROM */ + int write_ret = param_save_default(); + + if (write_ret == OK) { + mavlink_log_info(mavlink_fd, "OK saved param file"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + result = VEHICLE_CMD_RESULT_ACCEPTED; + + } else { + if (write_ret < -1) { + mavlink_log_info(mavlink_fd, "ERR params file does not exit:"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + + } else { + mavlink_log_info(mavlink_fd, "ERR writing params to"); + mavlink_log_info(mavlink_fd, param_get_default_file()); + } + + result = VEHICLE_CMD_RESULT_FAILED; + } + + } else { + mavlink_log_info(mavlink_fd, "[pm] refusing unsupp. STOR request"); + result = VEHICLE_CMD_RESULT_UNSUPPORTED; + } + } + } + break; + + default: { + mavlink_log_critical(mavlink_fd, "[cmd] refusing unsupported command"); + result = VEHICLE_CMD_RESULT_UNSUPPORTED; + /* announce command rejection */ + ioctl(buzzer, TONE_SET_ALARM, 4); + } + break; + } + + /* supported command handling stop */ + if (result == VEHICLE_CMD_RESULT_FAILED || + result == VEHICLE_CMD_RESULT_DENIED || + result == VEHICLE_CMD_RESULT_UNSUPPORTED) { + ioctl(buzzer, TONE_SET_ALARM, 5); + + } else if (result == VEHICLE_CMD_RESULT_ACCEPTED) { + tune_confirm(); + } + + /* send any requested ACKs */ + if (cmd->confirmation > 0) { + /* send acknowledge command */ + // XXX TODO + } + +} + +static void *orb_receive_loop(void *arg) //handles status information coming from subsystems (present, enabled, health), these values do not indicate the quality (variance) of the signal +{ + /* Set thread name */ + prctl(PR_SET_NAME, "commander orb rcv", getpid()); + + /* Subscribe to command topic */ + int subsys_sub = orb_subscribe(ORB_ID(subsystem_info)); + struct subsystem_info_s info; + + struct vehicle_status_s *vstatus = (struct vehicle_status_s *)arg; + + while (!thread_should_exit) { + struct pollfd fds[1] = { { .fd = subsys_sub, .events = POLLIN } }; + + if (poll(fds, 1, 5000) == 0) { + /* timeout, but this is no problem, silently ignore */ + } else { + /* got command */ + orb_copy(ORB_ID(subsystem_info), subsys_sub, &info); + + warnx("Subsys changed: %d\n", (int)info.subsystem_type); + + /* mark / unmark as present */ + if (info.present) { + vstatus->onboard_control_sensors_present |= info.subsystem_type; + + } else { + vstatus->onboard_control_sensors_present &= ~info.subsystem_type; + } + + /* mark / unmark as enabled */ + if (info.enabled) { + vstatus->onboard_control_sensors_enabled |= info.subsystem_type; + + } else { + vstatus->onboard_control_sensors_enabled &= ~info.subsystem_type; + } + + /* mark / unmark as ok */ + if (info.ok) { + vstatus->onboard_control_sensors_health |= info.subsystem_type; + + } else { + vstatus->onboard_control_sensors_health &= ~info.subsystem_type; + } + } + } + + close(subsys_sub); + + return NULL; +} + +/* + * Provides a coarse estimate of remaining battery power. + * + * The estimate is very basic and based on decharging voltage curves. + * + * @return the estimated remaining capacity in 0..1 + */ +float battery_remaining_estimate_voltage(float voltage); + +PARAM_DEFINE_FLOAT(BAT_V_EMPTY, 3.2f); +PARAM_DEFINE_FLOAT(BAT_V_FULL, 4.05f); +PARAM_DEFINE_FLOAT(BAT_N_CELLS, 3); + +float battery_remaining_estimate_voltage(float voltage) +{ + float ret = 0; + static param_t bat_volt_empty; + static param_t bat_volt_full; + static param_t bat_n_cells; + static bool initialized = false; + static unsigned int counter = 0; + static float ncells = 3; + // XXX change cells to int (and param to INT32) + + if (!initialized) { + bat_volt_empty = param_find("BAT_V_EMPTY"); + bat_volt_full = param_find("BAT_V_FULL"); + bat_n_cells = param_find("BAT_N_CELLS"); + initialized = true; + } + + static float chemistry_voltage_empty = 3.2f; + static float chemistry_voltage_full = 4.05f; + + if (counter % 100 == 0) { + param_get(bat_volt_empty, &chemistry_voltage_empty); + param_get(bat_volt_full, &chemistry_voltage_full); + param_get(bat_n_cells, &ncells); + } + + counter++; + + ret = (voltage - ncells * chemistry_voltage_empty) / (ncells * (chemistry_voltage_full - chemistry_voltage_empty)); + + /* limit to sane values */ + ret = (ret < 0) ? 0 : ret; + ret = (ret > 1) ? 1 : ret; + return ret; +} + +static void +usage(const char *reason) +{ + if (reason) + fprintf(stderr, "%s\n", reason); + + fprintf(stderr, "usage: daemon {start|stop|status} [-p ]\n\n"); + exit(1); +} + +/** + * The daemon app only briefly exists to start + * the background job. The stack size assigned in the + * Makefile does only apply to this management task. + * + * The actual stack size should be set in the call + * to task_create(). + */ +int commander_main(int argc, char *argv[]) +{ + if (argc < 1) + usage("missing command"); + + if (!strcmp(argv[1], "start")) { + + if (thread_running) { + warnx("commander already running\n"); + /* this is not an error */ + exit(0); + } + + thread_should_exit = false; + daemon_task = task_spawn("commander", + SCHED_DEFAULT, + SCHED_PRIORITY_MAX - 40, + 3000, + commander_thread_main, + (argv) ? (const char **)&argv[2] : (const char **)NULL); + exit(0); + } + + if (!strcmp(argv[1], "stop")) { + thread_should_exit = true; + exit(0); + } + + if (!strcmp(argv[1], "status")) { + if (thread_running) { + warnx("\tcommander is running\n"); + + } else { + warnx("\tcommander not started\n"); + } + + exit(0); + } + + usage("unrecognized command"); + exit(1); +} + +int commander_thread_main(int argc, char *argv[]) +{ + /* not yet initialized */ + commander_initialized = false; + bool home_position_set = false; + + /* set parameters */ + failsafe_lowlevel_timeout_ms = 0; + param_get(param_find("SYS_FAILSAVE_LL"), &failsafe_lowlevel_timeout_ms); + + param_t _param_sys_type = param_find("MAV_TYPE"); + param_t _param_system_id = param_find("MAV_SYS_ID"); + param_t _param_component_id = param_find("MAV_COMP_ID"); + + /* welcome user */ + warnx("I am in command now!\n"); + + /* pthreads for command and subsystem info handling */ + // pthread_t command_handling_thread; + pthread_t subsystem_info_thread; + + /* initialize */ + if (led_init() != 0) { + warnx("ERROR: Failed to initialize leds\n"); + } + + if (buzzer_init() != 0) { + warnx("ERROR: Failed to initialize buzzer\n"); + } + + mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); + + if (mavlink_fd < 0) { + warnx("ERROR: Failed to open MAVLink log stream, start mavlink app first.\n"); + } + + /* make sure we are in preflight state */ + memset(¤t_status, 0, sizeof(current_status)); + current_status.state_machine = SYSTEM_STATE_PREFLIGHT; + current_status.flag_system_armed = false; + /* neither manual nor offboard control commands have been received */ + current_status.offboard_control_signal_found_once = false; + current_status.rc_signal_found_once = false; + /* mark all signals lost as long as they haven't been found */ + current_status.rc_signal_lost = true; + current_status.offboard_control_signal_lost = true; + /* allow manual override initially */ + current_status.flag_external_manual_override_ok = true; + /* flag position info as bad, do not allow auto mode */ + current_status.flag_vector_flight_mode_ok = false; + /* set battery warning flag */ + current_status.battery_warning = VEHICLE_BATTERY_WARNING_NONE; + + /* advertise to ORB */ + stat_pub = orb_advertise(ORB_ID(vehicle_status), ¤t_status); + /* publish current state machine */ + state_machine_publish(stat_pub, ¤t_status, mavlink_fd); + + /* home position */ + orb_advert_t home_pub = -1; + struct home_position_s home; + memset(&home, 0, sizeof(home)); + + if (stat_pub < 0) { + warnx("ERROR: orb_advertise for topic vehicle_status failed (uorb app running?).\n"); + warnx("exiting."); + exit(ERROR); + } + + mavlink_log_info(mavlink_fd, "system is running"); + + /* create pthreads */ + pthread_attr_t subsystem_info_attr; + pthread_attr_init(&subsystem_info_attr); + pthread_attr_setstacksize(&subsystem_info_attr, 2048); + pthread_create(&subsystem_info_thread, &subsystem_info_attr, orb_receive_loop, ¤t_status); + + /* Start monitoring loop */ + uint16_t counter = 0; + uint8_t flight_env; + + /* Initialize to 0.0V */ + float battery_voltage = 0.0f; + bool battery_voltage_valid = false; + bool low_battery_voltage_actions_done = false; + bool critical_battery_voltage_actions_done = false; + uint8_t low_voltage_counter = 0; + uint16_t critical_voltage_counter = 0; + int16_t mode_switch_rc_value; + float bat_remain = 1.0f; + + uint16_t stick_off_counter = 0; + uint16_t stick_on_counter = 0; + + /* Subscribe to manual control data */ + int sp_man_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); + struct manual_control_setpoint_s sp_man; + memset(&sp_man, 0, sizeof(sp_man)); + + /* Subscribe to offboard control data */ + int sp_offboard_sub = orb_subscribe(ORB_ID(offboard_control_setpoint)); + struct offboard_control_setpoint_s sp_offboard; + memset(&sp_offboard, 0, sizeof(sp_offboard)); + + int global_position_sub = orb_subscribe(ORB_ID(vehicle_global_position)); + struct vehicle_global_position_s global_position; + memset(&global_position, 0, sizeof(global_position)); + uint64_t last_global_position_time = 0; + + int local_position_sub = orb_subscribe(ORB_ID(vehicle_local_position)); + struct vehicle_local_position_s local_position; + memset(&local_position, 0, sizeof(local_position)); + uint64_t last_local_position_time = 0; + + /* + * The home position is set based on GPS only, to prevent a dependency between + * position estimator and commander. RAW GPS is more than good enough for a + * non-flying vehicle. + */ + int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); + struct vehicle_gps_position_s gps_position; + memset(&gps_position, 0, sizeof(gps_position)); + + int sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); + struct sensor_combined_s sensors; + memset(&sensors, 0, sizeof(sensors)); + + int differential_pressure_sub = orb_subscribe(ORB_ID(differential_pressure)); + struct differential_pressure_s differential_pressure; + memset(&differential_pressure, 0, sizeof(differential_pressure)); + uint64_t last_differential_pressure_time = 0; + + /* Subscribe to command topic */ + int cmd_sub = orb_subscribe(ORB_ID(vehicle_command)); + struct vehicle_command_s cmd; + memset(&cmd, 0, sizeof(cmd)); + + /* Subscribe to parameters changed topic */ + int param_changed_sub = orb_subscribe(ORB_ID(parameter_update)); + struct parameter_update_s param_changed; + memset(¶m_changed, 0, sizeof(param_changed)); + + /* subscribe to battery topic */ + int battery_sub = orb_subscribe(ORB_ID(battery_status)); + struct battery_status_s battery; + memset(&battery, 0, sizeof(battery)); + battery.voltage_v = 0.0f; + + // uint8_t vehicle_state_previous = current_status.state_machine; + float voltage_previous = 0.0f; + + uint64_t last_idle_time = 0; + + /* now initialized */ + commander_initialized = true; + thread_running = true; + + uint64_t start_time = hrt_absolute_time(); + uint64_t failsave_ll_start_time = 0; + + bool state_changed = true; + bool param_init_forced = true; + + while (!thread_should_exit) { + + /* Get current values */ + bool new_data; + orb_check(sp_man_sub, &new_data); + + if (new_data) { + orb_copy(ORB_ID(manual_control_setpoint), sp_man_sub, &sp_man); + } + + orb_check(sp_offboard_sub, &new_data); + + if (new_data) { + orb_copy(ORB_ID(offboard_control_setpoint), sp_offboard_sub, &sp_offboard); + } + + orb_check(sensor_sub, &new_data); + + if (new_data) { + orb_copy(ORB_ID(sensor_combined), sensor_sub, &sensors); + } + + orb_check(differential_pressure_sub, &new_data); + + if (new_data) { + orb_copy(ORB_ID(differential_pressure), differential_pressure_sub, &differential_pressure); + last_differential_pressure_time = differential_pressure.timestamp; + } + + orb_check(cmd_sub, &new_data); + + if (new_data) { + /* got command */ + orb_copy(ORB_ID(vehicle_command), cmd_sub, &cmd); + + /* handle it */ + handle_command(stat_pub, ¤t_status, &cmd); + } + + /* update parameters */ + orb_check(param_changed_sub, &new_data); + + if (new_data || param_init_forced) { + param_init_forced = false; + /* parameters changed */ + orb_copy(ORB_ID(parameter_update), param_changed_sub, ¶m_changed); + + + /* update parameters */ + if (!current_status.flag_system_armed) { + if (param_get(_param_sys_type, &(current_status.system_type)) != OK) { + warnx("failed setting new system type"); + } + + /* disable manual override for all systems that rely on electronic stabilization */ + if (current_status.system_type == VEHICLE_TYPE_QUADROTOR || + current_status.system_type == VEHICLE_TYPE_HEXAROTOR || + current_status.system_type == VEHICLE_TYPE_OCTOROTOR) { + current_status.flag_external_manual_override_ok = false; + + } else { + current_status.flag_external_manual_override_ok = true; + } + + /* check and update system / component ID */ + param_get(_param_system_id, &(current_status.system_id)); + param_get(_param_component_id, &(current_status.component_id)); + + } + } + + /* update global position estimate */ + orb_check(global_position_sub, &new_data); + + if (new_data) { + /* position changed */ + orb_copy(ORB_ID(vehicle_global_position), global_position_sub, &global_position); + last_global_position_time = global_position.timestamp; + } + + /* update local position estimate */ + orb_check(local_position_sub, &new_data); + + if (new_data) { + /* position changed */ + orb_copy(ORB_ID(vehicle_local_position), local_position_sub, &local_position); + last_local_position_time = local_position.timestamp; + } + + /* update battery status */ + orb_check(battery_sub, &new_data); + if (new_data) { + orb_copy(ORB_ID(battery_status), battery_sub, &battery); + battery_voltage = battery.voltage_v; + battery_voltage_valid = true; + + /* + * Only update battery voltage estimate if system has + * been running for two and a half seconds. + */ + if (hrt_absolute_time() - start_time > 2500000) { + bat_remain = battery_remaining_estimate_voltage(battery_voltage); + } + } + + /* Slow but important 8 Hz checks */ + if (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 8) == 0) { + /* toggle activity (blue) led at 1 Hz in standby, 10 Hz in armed mode */ + if ((current_status.state_machine == SYSTEM_STATE_GROUND_READY || + current_status.state_machine == SYSTEM_STATE_AUTO || + current_status.state_machine == SYSTEM_STATE_MANUAL)) { + /* armed */ + led_toggle(LED_BLUE); + + } else if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { + /* not armed */ + led_toggle(LED_BLUE); + } + + /* toggle error led at 5 Hz in HIL mode */ + if (current_status.flag_hil_enabled) { + /* hil enabled */ + led_toggle(LED_AMBER); + + } else if (bat_remain < 0.3f && (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT)) { + /* toggle error (red) at 5 Hz on low battery or error */ + led_toggle(LED_AMBER); + + } else { + // /* Constant error indication in standby mode without GPS */ + // if (!current_status.gps_valid) { + // led_on(LED_AMBER); + + // } else { + // led_off(LED_AMBER); + // } + } + + if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { + /* compute system load */ + uint64_t interval_runtime = system_load.tasks[0].total_runtime - last_idle_time; + + if (last_idle_time > 0) + current_status.load = 1000 - (interval_runtime / 1000); //system load is time spent in non-idle + + last_idle_time = system_load.tasks[0].total_runtime; + } + } + + // // XXX Export patterns and threshold to parameters + /* Trigger audio event for low battery */ + if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 0)) { + /* For less than 10%, start be really annoying at 5 Hz */ + ioctl(buzzer, TONE_SET_ALARM, 0); + ioctl(buzzer, TONE_SET_ALARM, 3); + + } else if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 2)) { + ioctl(buzzer, TONE_SET_ALARM, 0); + + } else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 0)) { + /* For less than 20%, start be slightly annoying at 1 Hz */ + ioctl(buzzer, TONE_SET_ALARM, 0); + tune_confirm(); + + } else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 2)) { + ioctl(buzzer, TONE_SET_ALARM, 0); + } + + /* Check battery voltage */ + /* write to sys_status */ + if (battery_voltage_valid) { + current_status.voltage_battery = battery_voltage; + + } else { + current_status.voltage_battery = 0.0f; + } + + /* if battery voltage is getting lower, warn using buzzer, etc. */ + if (battery_voltage_valid && (bat_remain < 0.15f /* XXX MAGIC NUMBER */) && (false == low_battery_voltage_actions_done)) { //TODO: add filter, or call emergency after n measurements < VOLTAGE_BATTERY_MINIMAL_MILLIVOLTS + + if (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT) { + low_battery_voltage_actions_done = true; + mavlink_log_critical(mavlink_fd, "[cmd] WARNING! LOW BATTERY!"); + current_status.battery_warning = VEHICLE_BATTERY_WARNING_WARNING; + } + + low_voltage_counter++; + } + + /* Critical, this is rather an emergency, kill signal to sdlog and change state machine */ + else if (battery_voltage_valid && (bat_remain < 0.1f /* XXX MAGIC NUMBER */) && (false == critical_battery_voltage_actions_done && true == low_battery_voltage_actions_done)) { + if (critical_voltage_counter > CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT) { + critical_battery_voltage_actions_done = true; + mavlink_log_critical(mavlink_fd, "[cmd] EMERGENCY! CRITICAL BATTERY!"); + current_status.battery_warning = VEHICLE_BATTERY_WARNING_ALERT; + state_machine_emergency(stat_pub, ¤t_status, mavlink_fd); + } + + critical_voltage_counter++; + + } else { + low_voltage_counter = 0; + critical_voltage_counter = 0; + } + + /* End battery voltage check */ + + + /* + * Check for valid position information. + * + * If the system has a valid position source from an onboard + * position estimator, it is safe to operate it autonomously. + * The flag_vector_flight_mode_ok flag indicates that a minimum + * set of position measurements is available. + */ + + /* store current state to reason later about a state change */ + bool vector_flight_mode_ok = current_status.flag_vector_flight_mode_ok; + bool global_pos_valid = current_status.flag_global_position_valid; + bool local_pos_valid = current_status.flag_local_position_valid; + bool airspeed_valid = current_status.flag_airspeed_valid; + + /* check for global or local position updates, set a timeout of 2s */ + if (hrt_absolute_time() - last_global_position_time < 2000000) { + current_status.flag_global_position_valid = true; + // XXX check for controller status and home position as well + + } else { + current_status.flag_global_position_valid = false; + } + + if (hrt_absolute_time() - last_local_position_time < 2000000) { + current_status.flag_local_position_valid = true; + // XXX check for controller status and home position as well + + } else { + current_status.flag_local_position_valid = false; + } + + /* Check for valid airspeed/differential pressure measurements */ + if (hrt_absolute_time() - last_differential_pressure_time < 2000000) { + current_status.flag_airspeed_valid = true; + + } else { + current_status.flag_airspeed_valid = false; + } + + /* + * Consolidate global position and local position valid flags + * for vector flight mode. + */ + if (current_status.flag_local_position_valid || + current_status.flag_global_position_valid) { + current_status.flag_vector_flight_mode_ok = true; + + } else { + current_status.flag_vector_flight_mode_ok = false; + } + + /* consolidate state change, flag as changed if required */ + if (vector_flight_mode_ok != current_status.flag_vector_flight_mode_ok || + global_pos_valid != current_status.flag_global_position_valid || + local_pos_valid != current_status.flag_local_position_valid || + airspeed_valid != current_status.flag_airspeed_valid) { + state_changed = true; + } + + /* + * Mark the position of the first position lock as return to launch (RTL) + * position. The MAV will return here on command or emergency. + * + * Conditions: + * + * 1) The system aquired position lock just now + * 2) The system has not aquired position lock before + * 3) The system is not armed (on the ground) + */ + if (!current_status.flag_valid_launch_position && + !vector_flight_mode_ok && current_status.flag_vector_flight_mode_ok && + !current_status.flag_system_armed) { + /* first time a valid position, store it and emit it */ + + // XXX implement storage and publication of RTL position + current_status.flag_valid_launch_position = true; + current_status.flag_auto_flight_mode_ok = true; + state_changed = true; + } + + if (orb_check(ORB_ID(vehicle_gps_position), &new_data)) { + + orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps_position); + + /* check for first, long-term and valid GPS lock -> set home position */ + float hdop_m = gps_position.eph_m; + float vdop_m = gps_position.epv_m; + + /* check if gps fix is ok */ + // XXX magic number + float hdop_threshold_m = 4.0f; + float vdop_threshold_m = 8.0f; + + /* + * If horizontal dilution of precision (hdop / eph) + * and vertical diluation of precision (vdop / epv) + * are below a certain threshold (e.g. 4 m), AND + * home position is not yet set AND the last GPS + * GPS measurement is not older than two seconds AND + * the system is currently not armed, set home + * position to the current position. + */ + + if (gps_position.fix_type == GPS_FIX_TYPE_3D + && (hdop_m < hdop_threshold_m) + && (vdop_m < vdop_threshold_m) + && !home_position_set + && (hrt_absolute_time() - gps_position.timestamp_position < 2000000) + && !current_status.flag_system_armed) { + warnx("setting home position"); + + /* copy position data to uORB home message, store it locally as well */ + home.lat = gps_position.lat; + home.lon = gps_position.lon; + home.alt = gps_position.alt; + + home.eph_m = gps_position.eph_m; + home.epv_m = gps_position.epv_m; + + home.s_variance_m_s = gps_position.s_variance_m_s; + home.p_variance_m = gps_position.p_variance_m; + + /* announce new home position */ + if (home_pub > 0) { + orb_publish(ORB_ID(home_position), home_pub, &home); + } else { + home_pub = orb_advertise(ORB_ID(home_position), &home); + } + + /* mark home position as set */ + home_position_set = true; + tune_confirm(); + } + } + + /* ignore RC signals if in offboard control mode */ + if (!current_status.offboard_control_signal_found_once && sp_man.timestamp != 0) { + /* Start RC state check */ + + if ((hrt_absolute_time() - sp_man.timestamp) < 100000) { + + // /* + // * Check if manual control modes have to be switched + // */ + // if (!isfinite(sp_man.manual_mode_switch)) { + // warnx("man mode sw not finite\n"); + + // /* this switch is not properly mapped, set default */ + // if ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) || + // (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) || + // (current_status.system_type == VEHICLE_TYPE_OCTOROTOR)) { + + // /* assuming a rotary wing, fall back to SAS */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS; + // current_status.flag_control_attitude_enabled = true; + // current_status.flag_control_rates_enabled = true; + // } else { + + // /* assuming a fixed wing, fall back to direct pass-through */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_DIRECT; + // current_status.flag_control_attitude_enabled = false; + // current_status.flag_control_rates_enabled = false; + // } + + // } else if (sp_man.manual_mode_switch < -STICK_ON_OFF_LIMIT) { + + // /* bottom stick position, set direct mode for vehicles supporting it */ + // if ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) || + // (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) || + // (current_status.system_type == VEHICLE_TYPE_OCTOROTOR)) { + + // /* assuming a rotary wing, fall back to SAS */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS; + // current_status.flag_control_attitude_enabled = true; + // current_status.flag_control_rates_enabled = true; + // } else { + + // /* assuming a fixed wing, set to direct pass-through as requested */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_DIRECT; + // current_status.flag_control_attitude_enabled = false; + // current_status.flag_control_rates_enabled = false; + // } + + // } else if (sp_man.manual_mode_switch > STICK_ON_OFF_LIMIT) { + + // /* top stick position, set SAS for all vehicle types */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS; + // current_status.flag_control_attitude_enabled = true; + // current_status.flag_control_rates_enabled = true; + + // } else { + // /* center stick position, set rate control */ + // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_RATES; + // current_status.flag_control_attitude_enabled = false; + // current_status.flag_control_rates_enabled = true; + // } + + // warnx("man ctrl mode: %d\n", (int)current_status.manual_control_mode); + + /* + * Check if manual stability control modes have to be switched + */ + if (!isfinite(sp_man.manual_sas_switch)) { + + /* this switch is not properly mapped, set default */ + current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS; + + } else if (sp_man.manual_sas_switch < -STICK_ON_OFF_LIMIT) { + + /* bottom stick position, set altitude hold */ + current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ALTITUDE; + + } else if (sp_man.manual_sas_switch > STICK_ON_OFF_LIMIT) { + + /* top stick position */ + current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_SIMPLE; + + } else { + /* center stick position, set default */ + current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS; + } + + /* + * Check if left stick is in lower left position --> switch to standby state. + * Do this only for multirotors, not for fixed wing aircraft. + */ + if (((current_status.system_type == VEHICLE_TYPE_QUADROTOR) || + (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) || + (current_status.system_type == VEHICLE_TYPE_OCTOROTOR) + ) && + ((sp_man.yaw < -STICK_ON_OFF_LIMIT)) && + (sp_man.throttle < STICK_THRUST_RANGE * 0.2f)) { + if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) { + update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd); + stick_on_counter = 0; + + } else { + stick_off_counter++; + stick_on_counter = 0; + } + } + + /* check if left stick is in lower right position --> arm */ + if (sp_man.yaw > STICK_ON_OFF_LIMIT && sp_man.throttle < STICK_THRUST_RANGE * 0.2f) { + if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) { + update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd); + stick_on_counter = 0; + + } else { + stick_on_counter++; + stick_off_counter = 0; + } + } + + /* check manual override switch - switch to manual or auto mode */ + if (sp_man.manual_override_switch > STICK_ON_OFF_LIMIT) { + /* enable manual override */ + update_state_machine_mode_manual(stat_pub, ¤t_status, mavlink_fd); + + } else if (sp_man.manual_override_switch < -STICK_ON_OFF_LIMIT) { + // /* check auto mode switch for correct mode */ + // if (sp_man.auto_mode_switch > STICK_ON_OFF_LIMIT) { + // /* enable guided mode */ + // update_state_machine_mode_guided(stat_pub, ¤t_status, mavlink_fd); + + // } else if (sp_man.auto_mode_switch < -STICK_ON_OFF_LIMIT) { + // XXX hardcode to auto for now + update_state_machine_mode_auto(stat_pub, ¤t_status, mavlink_fd); + + // } + + } else { + /* center stick position, set SAS for all vehicle types */ + update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd); + } + + /* handle the case where RC signal was regained */ + if (!current_status.rc_signal_found_once) { + current_status.rc_signal_found_once = true; + mavlink_log_critical(mavlink_fd, "DETECTED RC SIGNAL FIRST TIME."); + + } else { + if (current_status.rc_signal_lost) mavlink_log_critical(mavlink_fd, "[cmd] RECOVERY - RC SIGNAL GAINED!"); + } + + current_status.rc_signal_cutting_off = false; + current_status.rc_signal_lost = false; + current_status.rc_signal_lost_interval = 0; + + } else { + static uint64_t last_print_time = 0; + + /* print error message for first RC glitch and then every 5 s / 5000 ms) */ + if (!current_status.rc_signal_cutting_off || ((hrt_absolute_time() - last_print_time) > 5000000)) { + /* only complain if the offboard control is NOT active */ + current_status.rc_signal_cutting_off = true; + mavlink_log_critical(mavlink_fd, "CRITICAL - NO REMOTE SIGNAL!"); + last_print_time = hrt_absolute_time(); + } + + /* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */ + current_status.rc_signal_lost_interval = hrt_absolute_time() - sp_man.timestamp; + + /* if the RC signal is gone for a full second, consider it lost */ + if (current_status.rc_signal_lost_interval > 1000000) { + current_status.rc_signal_lost = true; + current_status.failsave_lowlevel = true; + state_changed = true; + } + + // if (hrt_absolute_time() - current_status.failsave_ll_start_time > failsafe_lowlevel_timeout_ms*1000) { + // publish_armed_status(¤t_status); + // } + } + } + + + + + /* End mode switch */ + + /* END RC state check */ + + + /* State machine update for offboard control */ + if (!current_status.rc_signal_found_once && sp_offboard.timestamp != 0) { + if ((hrt_absolute_time() - sp_offboard.timestamp) < 5000000) { + + /* decide about attitude control flag, enable in att/pos/vel */ + bool attitude_ctrl_enabled = (sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE || + sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY || + sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_POSITION); + + /* decide about rate control flag, enable it always XXX (for now) */ + bool rates_ctrl_enabled = true; + + /* set up control mode */ + if (current_status.flag_control_attitude_enabled != attitude_ctrl_enabled) { + current_status.flag_control_attitude_enabled = attitude_ctrl_enabled; + state_changed = true; + } + + if (current_status.flag_control_rates_enabled != rates_ctrl_enabled) { + current_status.flag_control_rates_enabled = rates_ctrl_enabled; + state_changed = true; + } + + /* handle the case where offboard control signal was regained */ + if (!current_status.offboard_control_signal_found_once) { + current_status.offboard_control_signal_found_once = true; + /* enable offboard control, disable manual input */ + current_status.flag_control_manual_enabled = false; + current_status.flag_control_offboard_enabled = true; + state_changed = true; + tune_confirm(); + + mavlink_log_critical(mavlink_fd, "DETECTED OFFBOARD SIGNAL FIRST"); + + } else { + if (current_status.offboard_control_signal_lost) { + mavlink_log_critical(mavlink_fd, "RECOVERY OFFBOARD CONTROL"); + state_changed = true; + tune_confirm(); + } + } + + current_status.offboard_control_signal_weak = false; + current_status.offboard_control_signal_lost = false; + current_status.offboard_control_signal_lost_interval = 0; + + /* arm / disarm on request */ + if (sp_offboard.armed && !current_status.flag_system_armed) { + update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd); + /* switch to stabilized mode = takeoff */ + update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd); + + } else if (!sp_offboard.armed && current_status.flag_system_armed) { + update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd); + } + + } else { + static uint64_t last_print_time = 0; + + /* print error message for first RC glitch and then every 5 s / 5000 ms) */ + if (!current_status.offboard_control_signal_weak || ((hrt_absolute_time() - last_print_time) > 5000000)) { + current_status.offboard_control_signal_weak = true; + mavlink_log_critical(mavlink_fd, "CRIT:NO OFFBOARD CONTROL!"); + last_print_time = hrt_absolute_time(); + } + + /* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */ + current_status.offboard_control_signal_lost_interval = hrt_absolute_time() - sp_offboard.timestamp; + + /* if the signal is gone for 0.1 seconds, consider it lost */ + if (current_status.offboard_control_signal_lost_interval > 100000) { + current_status.offboard_control_signal_lost = true; + current_status.failsave_lowlevel_start_time = hrt_absolute_time(); + tune_confirm(); + + /* kill motors after timeout */ + if (hrt_absolute_time() - current_status.failsave_lowlevel_start_time > failsafe_lowlevel_timeout_ms * 1000) { + current_status.failsave_lowlevel = true; + state_changed = true; + } + } + } + } + + + current_status.counter++; + current_status.timestamp = hrt_absolute_time(); + + + /* If full run came back clean, transition to standby */ + if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT && + current_status.flag_preflight_gyro_calibration == false && + current_status.flag_preflight_mag_calibration == false && + current_status.flag_preflight_accel_calibration == false) { + /* All ok, no calibration going on, go to standby */ + do_state_update(stat_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); + } + + /* publish at least with 1 Hz */ + if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0 || state_changed) { + publish_armed_status(¤t_status); + orb_publish(ORB_ID(vehicle_status), stat_pub, ¤t_status); + state_changed = false; + } + + /* Store old modes to detect and act on state transitions */ + voltage_previous = current_status.voltage_battery; + + fflush(stdout); + counter++; + usleep(COMMANDER_MONITORING_INTERVAL); + } + + /* wait for threads to complete */ + // pthread_join(command_handling_thread, NULL); + pthread_join(subsystem_info_thread, NULL); + + /* close fds */ + led_deinit(); + buzzer_deinit(); + close(sp_man_sub); + close(sp_offboard_sub); + close(global_position_sub); + close(sensor_sub); + close(cmd_sub); + + warnx("exiting..\n"); + fflush(stdout); + + thread_running = false; + + return 0; +} -- cgit v1.2.3