clear all close all %%%%%%%%%%%%%%%%%%%%%%% % SYSTEM VECTOR % % //All measurements in NED frame % % uint64_t timestamp; //[us] % float gyro[3]; //[rad/s] % float accel[3]; //[m/s^2] % float mag[3]; //[gauss] % float baro; //pressure [millibar] % float baro_alt; //altitude above MSL [meter] % float baro_temp; //[degree celcius] % float control[4]; //roll, pitch, yaw [-1..1], thrust [0..1] % float actuators[8]; //motor 1-8, in motor units (PWM: 1000-2000,AR.Drone: 0-512) % float vbat; //battery voltage in [volt] % float adc[3]; //remaining auxiliary ADC ports [volt] % float local_position[3]; //tangent plane mapping into x,y,z [m] % int32_t gps_raw_position[3]; //latitude [degrees] north, longitude [degrees] east, altitude above MSL [millimeter] % float attitude[3]; //pitch, roll, yaw [rad] % float rotMatrix[9]; //unitvectors %myPath = '..\LOG30102012\session0002\'; %set relative path here myPath = '.\'; myFile = 'sysvector.bin'; filePath = strcat(myPath,myFile); if exist(filePath, 'file') fileInfo = dir(filePath); fileSize = fileInfo.bytes; fid = fopen(filePath, 'r'); elements = int64(fileSize./(8+(3+3+3+1+1+1+4+8+1+3+3+3+3+9+6+4+6)*4)) for i=1:elements % timestamp sensors(i,1) = double(fread(fid, 1, '*uint64', 0, 'ieee-le.l64')); % gyro (3 channels) sensors(i,2:4) = fread(fid, 3, 'float', 0, 'ieee-le'); % accelerometer (3 channels) sensors(i,5:7) = fread(fid, 3, 'float', 0, 'ieee-le'); % mag (3 channels) sensors(i,8:10) = fread(fid, 3, 'float', 0, 'ieee-le'); % baro pressure sensors(i,11) = fread(fid, 1, 'float', 0, 'ieee-le'); % baro alt sensors(i,12) = fread(fid, 1, 'float', 0, 'ieee-le'); % baro temp sensors(i,13) = fread(fid, 1, 'float', 0, 'ieee-le'); % actuator control (4 channels) sensors(i,14:17) = fread(fid, 4, 'float', 0, 'ieee-le'); % actuator outputs (8 channels) sensors(i,18:25) = fread(fid, 8, 'float', 0, 'ieee-le'); % vbat sensors(i,26) = fread(fid, 1, 'float', 0, 'ieee-le'); % adc voltage (3 channels) sensors(i,27:29) = fread(fid, 3, 'float', 0, 'ieee-le'); % local position (3 channels) sensors(i,30:32) = fread(fid, 3, 'float', 0, 'ieee-le'); % gps_raw_position (3 channels) sensors(i,33:35) = fread(fid, 3, 'uint32', 0, 'ieee-le'); % attitude (3 channels) sensors(i,36:38) = fread(fid, 3, 'float', 0, 'ieee-le'); % RotMatrix (9 channels) sensors(i,39:47) = fread(fid, 9, 'float', 0, 'ieee-le'); % vicon position (6 channels) sensors(i,48:53) = fread(fid, 6, 'float', 0, 'ieee-le'); % actuator control effective (4 channels) sensors(i,54:57) = fread(fid, 4, 'float', 0, 'ieee-le'); % optical flow (6 values) sensors(i,58:63) = fread(fid, 6, 'float', 0, 'ieee-le'); end time_us = sensors(elements,1) - sensors(1,1); time_s = time_us*1e-6 time_m = time_s/60 disp(['end log2matlab conversion' char(10)]); else disp(['file: ' filePath ' does not exist' char(10)]); end %% old version of reading in different files from sdlog.c % if exist('sysvector.bin', 'file') % % Read actuators file % myFile = java.io.File('sysvector.bin') % fileSize = length(myFile) % % fid = fopen('sysvector.bin', 'r'); % elements = int64(fileSize./(8+(3+3+3+1+1+1+4+8+4+3+3)*4)); % % for i=1:elements % % timestamp % sysvector(i,1) = double(fread(fid, 1, '*uint64', 0, 'ieee-le.l64')); % % actuators 1-16 % % quadrotor: motor 1-4 on the first four positions % sysvector(i, 2:32) = fread(fid, 28+3, 'float', 'ieee-le'); % sysvector(i,33:35) = fread(fid, 3, 'int32', 'ieee-le'); % end % % sysvector_interval_seconds = (sysvector(end,1) - sysvector(1:1)) / 1000000 % sysvector_minutes = sysvector_interval_seconds / 60 % % % Normalize time % sysvector(:,1) = (sysvector(:,1) - sysvector(1,1)) / 1000000; % % % Create some basic plots % % % Remove zero rows from GPS % gps = sysvector(:,33:35); % gps(~any(gps,2), :) = []; % % all_data = figure('Name', 'GPS RAW'); % gps_position = plot3(gps(:,1), gps(:,2), gps(:,3)); % % % all_data = figure('Name', 'Complete Log Data (exc. GPS)'); % plot(sysvector(:,1), sysvector(:,2:32)); % % actuator_inputs = figure('Name', 'Attitude controller outputs'); % plot(sysvector(:,1), sysvector(:,14:17)); % legend('roll motor setpoint', 'pitch motor setpoint', 'yaw motor setpoint', 'throttle motor setpoint'); % % actuator_outputs = figure('Name', 'Actuator outputs'); % plot(sysvector(:,1), sysvector(:,18:25)); % legend('actuator 0', 'actuator 1', 'actuator 2', 'actuator 3', 'actuator 4', 'actuator 5', 'actuator 6', 'actuator 7'); % % end % % if exist('actuator_outputs0.bin', 'file') % % Read actuators file % myFile = java.io.File('actuator_outputs0.bin') % fileSize = length(myFile) % % fid = fopen('actuator_outputs0.bin', 'r'); % elements = int64(fileSize./(16*4+8)) % % for i=1:elements % % timestamp % actuators(i,1) = double(fread(fid, 1, '*uint64', 0, 'ieee-le.l64')); % % actuators 1-16 % % quadrotor: motor 1-4 on the first four positions % actuators(i, 2:17) = fread(fid, 16, 'float', 'ieee-le'); % end % end % % if exist('actuator_controls0.bin', 'file') % % Read actuators file % myFile = java.io.File('actuator_controls0.bin') % fileSize = length(myFile) % % fid = fopen('actuator_controls0.bin', 'r'); % elements = int64(fileSize./(8*4+8)) % % for i=1:elements % % timestamp % actuator_controls(i,1) = fread(fid, 1, 'uint64', 0, 'ieee-le.l64'); % % actuators 1-16 % % quadrotor: motor 1-4 on the first four positions % actuator_controls(i, 2:9) = fread(fid, 8, 'float', 'ieee-le'); % end % end % % % if exist('sensor_combined.bin', 'file') % % Read sensor combined file % % Type definition: Firmware/apps/uORB/topics/sensor_combined.h % % Struct: sensor_combined_s % fileInfo = dir('sensor_combined.bin'); % fileSize = fileInfo.bytes; % % fid = fopen('sensor_combined.bin', 'r'); % % for i=1:elements % % timestamp % sensors(i,1) = double(fread(fid, 1, '*uint64', 0, 'ieee-le.l64')); % % gyro raw % sensors(i,2:4) = fread(fid, 3, 'int16', 0, 'ieee-le'); % % gyro counter % sensors(i,5) = fread(fid, 1, 'uint16', 0, 'ieee-le'); % % gyro in rad/s % sensors(i,6:8) = fread(fid, 3, 'float', 0, 'ieee-le'); % % % accelerometer raw % sensors(i,9:11) = fread(fid, 3, 'int16', 0, 'ieee-le'); % % padding bytes % fread(fid, 1, 'int16', 0, 'ieee-le'); % % accelerometer counter % sensors(i,12) = fread(fid, 1, 'uint32', 0, 'ieee-le'); % % accel in m/s2 % sensors(i,13:15) = fread(fid, 3, 'float', 0, 'ieee-le'); % % accel mode % sensors(i,16) = fread(fid, 1, 'int32', 0, 'ieee-le'); % % accel range % sensors(i,17) = fread(fid, 1, 'float', 0, 'ieee-le'); % % % mag raw % sensors(i,18:20) = fread(fid, 3, 'int16', 0, 'ieee-le'); % % padding bytes % fread(fid, 1, 'int16', 0, 'ieee-le'); % % mag in Gauss % sensors(i,21:23) = fread(fid, 3, 'float', 0, 'ieee-le'); % % mag mode % sensors(i,24) = fread(fid, 1, 'int32', 0, 'ieee-le'); % % mag range % sensors(i,25) = fread(fid, 1, 'float', 0, 'ieee-le'); % % mag cuttoff freq % sensors(i,26) = fread(fid, 1, 'float', 0, 'ieee-le'); % % mag counter % sensors(i,27) = fread(fid, 1, 'int32', 0, 'ieee-le'); % % % baro pressure millibar % % baro alt meter % % baro temp celcius % % battery voltage % % adc voltage (3 channels) % sensors(i,28:34) = fread(fid, 7, 'float', 0, 'ieee-le'); % % baro counter and battery counter % sensors(i,35:36) = fread(fid, 2, 'uint32', 0, 'ieee-le'); % % battery voltage valid flag % sensors(i,37) = fread(fid, 1, 'uint32', 0, 'ieee-le'); % % end % end