/**************************************************************************** * * Copyright (C) 2008-2012 PX4 Development Team. All rights reserved. * Author: @author Thomas Gubler * @author Julian Oes * @author Laurens Mackay * @author Tobias Naegeli * @author Martin Rutschmann * @author Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* * @file attitude_control.c * Implementation of attitude controller */ #include "attitude_control.h" #include #include #include #include #include #include "ardrone_motor_control.h" #include #include #include "pid.h" #include #define MAX_MOTOR_COUNT 16 void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att, const struct vehicle_status_s *status, struct actuator_controls_s *actuators, bool verbose) { static uint64_t last_run = 0; const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); static int motor_skip_counter = 0; static PID_t yaw_pos_controller; static PID_t yaw_speed_controller; static PID_t pitch_controller; static PID_t roll_controller; static float pid_yawpos_lim; static float pid_yawspeed_lim; static float pid_att_lim; static bool initialized = false; /* initialize the pid controllers when the function is called for the first time */ if (initialized == false) { pid_init(&yaw_pos_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU], PID_MODE_DERIVATIV_CALC, 154); pid_init(&yaw_speed_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU], PID_MODE_DERIVATIV_CALC, 155); pid_init(&pitch_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU], PID_MODE_DERIVATIV_SET, 156); pid_init(&roll_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU], PID_MODE_DERIVATIV_SET, 157); pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM]; pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM]; pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM]; initialized = true; } /* load new parameters with lower rate */ if (motor_skip_counter % 50 == 0) { pid_set_parameters(&yaw_pos_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]); pid_set_parameters(&yaw_speed_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D], global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]); pid_set_parameters(&pitch_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]); pid_set_parameters(&roll_controller, global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]); pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM]; pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM]; pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM]; } /*Calculate Controllers*/ //control Nick float pitch_control = pid_calculate(&pitch_controller, att_sp->pitch_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET], att->pitch, att->pitchspeed, deltaT); //control Roll float roll_control = pid_calculate(&roll_controller, att_sp->roll_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET], att->roll, att->rollspeed, deltaT); //control Yaw Speed float yaw_rate_control = pid_calculate(&yaw_speed_controller, att_sp->yaw_body, att->yawspeed, 0.0f, deltaT); //attitude_setpoint_bodyframe.z is yaw speed! /* * compensate the vertical loss of thrust * when thrust plane has an angle. * start with a factor of 1.0 (no change) */ float zcompensation = 1.0f; if (fabsf(att->roll) > 1.0f) { zcompensation *= 1.85081571768f; } else { zcompensation *= 1.0f / cosf(att->roll); } if (fabsf(att->pitch) > 1.0f) { zcompensation *= 1.85081571768f; } else { zcompensation *= 1.0f / cosf(att->pitch); } float motor_thrust = 0.0f; // FLYING MODES motor_thrust = att_sp->thrust; //printf("mot0: %3.1f\n", motor_thrust); /* compensate thrust vector for roll / pitch contributions */ motor_thrust *= zcompensation; /* limit yaw rate output */ if (yaw_rate_control > pid_yawspeed_lim) { yaw_rate_control = pid_yawspeed_lim; yaw_speed_controller.saturated = 1; } if (yaw_rate_control < -pid_yawspeed_lim) { yaw_rate_control = -pid_yawspeed_lim; yaw_speed_controller.saturated = 1; } if (pitch_control > pid_att_lim) { pitch_control = pid_att_lim; pitch_controller.saturated = 1; } if (pitch_control < -pid_att_lim) { pitch_control = -pid_att_lim; pitch_controller.saturated = 1; } if (roll_control > pid_att_lim) { roll_control = pid_att_lim; roll_controller.saturated = 1; } if (roll_control < -pid_att_lim) { roll_control = -pid_att_lim; roll_controller.saturated = 1; } actuators->control[0] = roll_control; actuators->control[1] = pitch_control; actuators->control[2] = yaw_rate_control; actuators->control[3] = motor_thrust; } void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators, bool verbose) { float roll_control = actuators->control[0]; float pitch_control = actuators->control[1]; float yaw_control = actuators->control[2]; float motor_thrust = actuators->control[3]; unsigned int motor_skip_counter = 0; const float min_thrust = 0.02f; /**< 2% minimum thrust */ const float max_thrust = 1.0f; /**< 100% max thrust */ const float scaling = 512.0f; /**< 100% thrust equals a value of 512 */ const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */ const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */ /* initialize all fields to zero */ uint16_t motor_pwm[MAX_MOTOR_COUNT] = {0}; float motor_calc[MAX_MOTOR_COUNT] = {0}; float output_band = 0.0f; float band_factor = 0.75f; const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */ float yaw_factor = 1.0f; if (motor_thrust <= min_thrust) { motor_thrust = min_thrust; output_band = 0.0f; } else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) { output_band = band_factor * (motor_thrust - min_thrust); } else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) { output_band = band_factor * startpoint_full_control; } else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) { output_band = band_factor * (max_thrust - motor_thrust); } if (verbose && motor_skip_counter % 100 == 0) { printf("1: mot1: %3.1f band: %3.1f r: %3.1f n: %3.1f y: %3.1f\n", (double)motor_thrust, (double)output_band, (double)roll_control, (double)pitch_control, (double)yaw_control); } //add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer // FRONT (MOTOR 1) motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control); // RIGHT (MOTOR 2) motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control); // BACK (MOTOR 3) motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control); // LEFT (MOTOR 4) motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control); // if we are not in the output band if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band && motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band && motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band && motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) { yaw_factor = 0.5f; // FRONT (MOTOR 1) motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor); // RIGHT (MOTOR 2) motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor); // BACK (MOTOR 3) motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor); // LEFT (MOTOR 4) motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor); } if (verbose && motor_skip_counter % 100 == 0) { printf("2: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); } for (int i = 0; i < 4; i++) { //check for limits if (motor_calc[i] < motor_thrust - output_band) { motor_calc[i] = motor_thrust - output_band; } if (motor_calc[i] > motor_thrust + output_band) { motor_calc[i] = motor_thrust + output_band; } } if (verbose && motor_skip_counter % 100 == 0) { printf("3: band lim: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); } /* set the motor values */ /* scale up from 0..1 to 10..512) */ motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas); motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas); motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas); motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas); if (verbose && motor_skip_counter % 100 == 0) { printf("4: scaled: m1: %d m2: %d m3: %d m4: %d\n", motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); } /* Keep motors spinning while armed and prevent overflows */ /* Failsafe logic - should never be necessary */ motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10; motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10; motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10; motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10; /* Failsafe logic - should never be necessary */ motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512; motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512; motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512; motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512; /* send motors via UART */ if (verbose && motor_skip_counter % 100 == 0) printf("5: mot: %3.1f-%i-%i-%i-%i\n\n", (double)motor_thrust, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); motor_skip_counter++; }