/**************************************************************************** * * Copyright (C) 2012,2013 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file px4io.cpp * Driver for the PX4IO board. * * PX4IO is connected via I2C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "uploader.h" class PX4IO : public device::I2C { public: PX4IO(); ~PX4IO(); virtual int init(); virtual int ioctl(file *filp, int cmd, unsigned long arg); virtual ssize_t write(file *filp, const char *buffer, size_t len); private: // XXX unsigned _max_actuators; unsigned _max_rc_input; unsigned _max_relays; unsigned _max_transfer; unsigned _update_interval; ///< subscription interval limiting send rate volatile int _task; ///< worker task volatile bool _task_should_exit; volatile bool _connected; ///< true once we have received a valid frame perf_counter_t _perf_update; /* cached IO state */ uint16_t _status; uint16_t _alarms; /* subscribed topics */ int _t_actuators; ///< actuator output topic int _t_armed; ///< system armed control topic int _t_vstatus; ///< system / vehicle status int _t_param; ///< parameter update topic /* advertised topics */ orb_advert_t _to_input_rc; ///< rc inputs from io orb_advert_t _to_actuators_effective; ///< effective actuator controls topic orb_advert_t _to_outputs; ///< mixed servo outputs topic orb_advert_t _to_battery; ///< battery status / voltage actuator_outputs_s _outputs; ///< mixed outputs actuator_controls_effective_s _controls_effective; ///< effective controls const char *volatile _mix_buf; ///< mixer text buffer volatile unsigned _mix_buf_len; ///< size of the mixer text buffer bool _primary_pwm_device; ///< true if we are the default PWM output /** * Trampoline to the worker task */ static void task_main_trampoline(int argc, char *argv[]); /** * worker task */ void task_main(); /** * Send controls to IO */ int io_set_control_state(); /** * Update IO's arming-related state */ int io_set_arming_state(); /** * Push RC channel configuration to IO. */ int io_set_rc_config(); /** * Fetch status and alarms from IO * * Also publishes battery voltage/current. */ int io_get_status(); /** * Fetch RC inputs from IO. * * @param input_rc Input structure to populate. * @return OK if data was returned. */ int io_get_raw_rc_input(rc_input_values &input_rc); /** * Fetch and publish raw RC input data. */ int io_publish_raw_rc(); /** * Fetch and publish the mixed control values. */ int io_publish_mixed_controls(); /** * Fetch and publish the PWM servo outputs. */ int io_publish_pwm_outputs(); /** * write register(s) * * @param page Register page to write to. * @param offset Register offset to start writing at. * @param values Pointer to array of values to write. * @param num_values The number of values to write. * @return Zero if all values were successfully written. */ int io_reg_set(uint8_t page, uint8_t offset, const uint16_t *values, unsigned num_values); /** * write a register * * @param page Register page to write to. * @param offset Register offset to write to. * @param value Value to write. * @return Zero if the value was written successfully. */ int io_reg_set(uint8_t page, uint8_t offset, const uint16_t value); /** * read register(s) * * @param page Register page to read from. * @param offset Register offset to start reading from. * @param values Pointer to array where values should be stored. * @param num_values The number of values to read. * @return Zero if all values were successfully read. */ int io_reg_get(uint8_t page, uint8_t offset, uint16_t *values, unsigned num_values); /** * read a register * * @param page Register page to read from. * @param offset Register offset to start reading from. * @return Register value that was read, or _io_reg_get_error on error. */ uint32_t io_reg_get(uint8_t page, uint8_t offset); static const uint32_t _io_reg_get_error = 0x80000000; /** * modify a register * * @param page Register page to modify. * @param offset Register offset to modify. * @param clearbits Bits to clear in the register. * @param setbits Bits to set in the register. */ int io_reg_modify(uint8_t page, uint8_t offset, uint16_t clearbits, uint16_t setbits); /** * Send mixer definition text to IO */ int mixer_send(const char *buf, unsigned buflen); }; namespace { PX4IO *g_dev; } PX4IO::PX4IO() : I2C("px4io", "/dev/px4io", PX4_I2C_BUS_ONBOARD, PX4_I2C_OBDEV_PX4IO, 320000), _max_actuators(0), _max_rc_input(0), _max_relays(0), _max_transfer(16), /* sensible default */ _update_interval(0), _task(-1), _task_should_exit(false), _connected(false), _perf_update(perf_alloc(PC_ELAPSED, "px4io update")), _t_actuators(-1), _t_armed(-1), _t_vstatus(-1), _to_input_rc(0), _to_actuators_effective(0), _to_outputs(0), _to_battery(0), _mix_buf(nullptr), _mix_buf_len(0), _primary_pwm_device(false) { /* we need this potentially before it could be set in task_main */ g_dev = this; _debug_enabled = true; } PX4IO::~PX4IO() { /* tell the task we want it to go away */ _task_should_exit = true; /* spin waiting for the task to stop */ for (unsigned i = 0; (i < 10) && (_task != -1); i++) { /* give it another 100ms */ usleep(100000); } /* well, kill it anyway, though this will probably crash */ if (_task != -1) task_delete(_task); g_dev = nullptr; } int PX4IO::init() { int ret; ASSERT(_task == -1); /* do regular cdev init */ ret = I2C::init(); if (ret != OK) return ret; /* get some parameters */ _max_actuators = io_reg_get(PX4IO_PAGE_CONFIG, PX4IO_P_CONFIG_ACTUATOR_COUNT); _max_relays = io_reg_get(PX4IO_PAGE_CONFIG, PX4IO_P_CONFIG_RELAY_COUNT); _max_transfer = io_reg_get(PX4IO_PAGE_CONFIG, PX4IO_P_CONFIG_MAX_TRANSFER); _max_rc_input = io_reg_get(PX4IO_PAGE_CONFIG, PX4IO_P_CONFIG_RC_INPUT_COUNT); if ((_max_actuators < 1) || (_max_actuators == _io_reg_get_error) || (_max_relays < 1) || (_max_relays == _io_reg_get_error) || (_max_relays < 16) || (_max_relays == _io_reg_get_error) || (_max_rc_input < 1) || (_max_rc_input == _io_reg_get_error)) { log("failed getting parameters from PX4IO"); return ret; } if (_max_rc_input > RC_INPUT_MAX_CHANNELS) _max_rc_input = RC_INPUT_MAX_CHANNELS; /* publish RC config to IO */ ret = io_set_rc_config(); if (ret != OK) { log("failed to update RC input config"); return ret; } /* try to claim the generic PWM output device node as well - it's OK if we fail at this */ ret = register_driver(PWM_OUTPUT_DEVICE_PATH, &fops, 0666, (void *)this); if (ret == OK) { log("default PWM output device"); _primary_pwm_device = true; } /* start the IO interface task */ _task = task_create("px4io", SCHED_PRIORITY_ACTUATOR_OUTPUTS, 4096, (main_t)&PX4IO::task_main_trampoline, nullptr); if (_task < 0) { debug("task start failed: %d", errno); return -errno; } /* wait a second for it to detect IO */ for (unsigned i = 0; i < 10; i++) { if (_connected) { debug("PX4IO connected"); break; } usleep(100000); } if (!_connected) { /* error here will result in everything being torn down */ log("PX4IO not responding"); return -EIO; } return OK; } void PX4IO::task_main_trampoline(int argc, char *argv[]) { g_dev->task_main(); } void PX4IO::task_main() { hrt_abstime last_poll_time = 0; log("starting"); /* * Subscribe to the appropriate PWM output topic based on whether we are the * primary PWM output or not. */ _t_actuators = orb_subscribe(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS : ORB_ID(actuator_controls_1)); orb_set_interval(_t_actuators, 20); /* default to 50Hz */ _t_armed = orb_subscribe(ORB_ID(actuator_armed)); orb_set_interval(_t_armed, 200); /* 5Hz update rate */ _t_vstatus = orb_subscribe(ORB_ID(vehicle_status)); orb_set_interval(_t_vstatus, 200); /* 5Hz update rate max. */ _t_param = orb_subscribe(ORB_ID(parameter_update)); orb_set_interval(_t_param, 500); /* 2Hz update rate max. */ /* poll descriptor */ pollfd fds[4]; fds[0].fd = _t_actuators; fds[0].events = POLLIN; fds[1].fd = _t_armed; fds[1].events = POLLIN; fds[2].fd = _t_vstatus; fds[2].events = POLLIN; fds[3].fd = _t_param; fds[3].events = POLLIN; debug("ready"); /* lock against the ioctl handler */ lock(); /* loop talking to IO */ while (!_task_should_exit) { /* adjust update interval */ if (_update_interval != 0) { if (_update_interval < 5) _update_interval = 5; if (_update_interval > 100) _update_interval = 100; orb_set_interval(_t_actuators, _update_interval); _update_interval = 0; } /* sleep waiting for topic updates, but no more than 100ms */ unlock(); int ret = ::poll(&fds[0], sizeof(fds) / sizeof(fds[0]), 100); lock(); /* this would be bad... */ if (ret < 0) { log("poll error %d", errno); continue; } /* if we have new control data from the ORB, handle it */ if (fds[0].revents & POLLIN) io_set_control_state(); /* if we have an arming state update, handle it */ if ((fds[1].revents & POLLIN) || (fds[2].revents & POLLIN)) io_set_arming_state(); hrt_abstime now = hrt_absolute_time(); /* * If this isn't time for the next tick of the polling state machine, * go back to sleep. */ if ((now - last_poll_time) < 20000) continue; /* * Pull status and alarms from IO. */ io_get_status(); /* * Get R/C input from IO. */ io_publish_raw_rc(); /* * Fetch mixed servo controls and PWM outputs from IO. * * XXX We could do this at a reduced rate in many/most cases. */ io_publish_mixed_controls(); io_publish_pwm_outputs(); /* * If parameters have changed, re-send RC mappings to IO * * XXX this may be a bit spammy */ if (fds[3].revents & POLLIN) { parameter_update_s pupdate; /* copy to reset the notification */ orb_copy(ORB_ID(parameter_update), _t_param, &pupdate); /* re-upload RC input config as it may have changed */ io_set_rc_config(); } } unlock(); debug("exiting"); /* clean up the alternate device node */ if (_primary_pwm_device) unregister_driver(PWM_OUTPUT_DEVICE_PATH); /* tell the dtor that we are exiting */ _task = -1; _exit(0); } int PX4IO::io_set_control_state() { actuator_controls_s controls; ///< actuator outputs uint16_t regs[_max_actuators]; /* get controls */ orb_copy(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS : ORB_ID(actuator_controls_1), _t_actuators, &controls); for (unsigned i = 0; i < _max_actuators; i++) regs[i] = FLOAT_TO_REG(controls.control[i]); /* copy values to registers in IO */ return io_reg_set(PX4IO_PAGE_CONTROLS, 0, regs, _max_actuators); } int PX4IO::io_set_arming_state() { actuator_armed_s armed; ///< system armed state vehicle_status_s vstatus; ///< overall system state orb_copy(ORB_ID(actuator_armed), _t_armed, &armed); orb_copy(ORB_ID(vehicle_status), _t_vstatus, &vstatus); uint16_t set = 0; uint16_t clear = 0; if (armed.armed) { set |= PX4IO_P_SETUP_ARMING_ARM_OK; } else { clear |= PX4IO_P_SETUP_ARMING_ARM_OK; } if (vstatus.flag_vector_flight_mode_ok) { set |= PX4IO_P_SETUP_ARMING_VECTOR_FLIGHT_OK; } else { clear |= PX4IO_P_SETUP_ARMING_VECTOR_FLIGHT_OK; } if (vstatus.flag_external_manual_override_ok) { set |= PX4IO_P_SETUP_ARMING_MANUAL_OVERRIDE; } else { clear |= PX4IO_P_SETUP_ARMING_MANUAL_OVERRIDE; } return io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_ARMING, clear, set); } int PX4IO::io_set_rc_config() { unsigned offset = 0; int input_map[_max_rc_input]; int32_t ichan; int ret = OK; /* * Generate the input channel -> control channel mapping table; * assign RC_MAP_ROLL/PITCH/YAW/THROTTLE to the canonical * controls. */ for (unsigned i = 0; i < _max_rc_input; i++) input_map[i] = -1; param_get(param_find("RC_MAP_ROLL"), &ichan); if ((ichan >= 0) && (ichan < (int)_max_rc_input)) input_map[ichan] = 0; param_get(param_find("RC_MAP_PITCH"), &ichan); if ((ichan >= 0) && (ichan < (int)_max_rc_input)) input_map[ichan] = 1; param_get(param_find("RC_MAP_YAW"), &ichan); if ((ichan >= 0) && (ichan < (int)_max_rc_input)) input_map[ichan] = 2; param_get(param_find("RC_MAP_THROTTLE"), &ichan); if ((ichan >= 0) && (ichan < (int)_max_rc_input)) input_map[ichan] = 3; ichan = 4; for (unsigned i = 0; i < _max_rc_input; i++) if (input_map[i] == -1) input_map[i] = ichan++; /* * Iterate all possible RC inputs. */ for (unsigned i = 0; i < _max_rc_input; i++) { uint16_t regs[PX4IO_P_RC_CONFIG_STRIDE]; char pname[16]; float fval; sprintf(pname, "RC%d_MIN", i + 1); param_get(param_find(pname), &fval); regs[PX4IO_P_RC_CONFIG_MIN] = FLOAT_TO_REG(fval); sprintf(pname, "RC%d_TRIM", i + 1); param_get(param_find(pname), &fval); regs[PX4IO_P_RC_CONFIG_CENTER] = FLOAT_TO_REG(fval); sprintf(pname, "RC%d_MAX", i + 1); param_get(param_find(pname), &fval); regs[PX4IO_P_RC_CONFIG_MAX] = FLOAT_TO_REG(fval); sprintf(pname, "RC%d_DZ", i + 1); param_get(param_find(pname), &fval); regs[PX4IO_P_RC_CONFIG_DEADZONE] = FLOAT_TO_REG(fval); regs[PX4IO_P_RC_CONFIG_ASSIGNMENT] = input_map[i]; regs[PX4IO_P_RC_CONFIG_OPTIONS] = PX4IO_P_RC_CONFIG_OPTIONS_ENABLED; sprintf(pname, "RC%d_REV", i + 1); param_get(param_find(pname), &fval); if (fval > 0) regs[PX4IO_P_RC_CONFIG_OPTIONS] |= PX4IO_P_RC_CONFIG_OPTIONS_REVERSE; /* send channel config to IO */ ret = io_reg_set(PX4IO_PAGE_RC_CONFIG, offset, regs, PX4IO_P_RC_CONFIG_STRIDE); if (ret != OK) break; offset += PX4IO_P_RC_CONFIG_STRIDE; } return ret; } int PX4IO::io_get_status() { uint16_t regs[4]; int ret; /* get STATUS_FLAGS, STATUS_ALARMS, STATUS_VBATT, STATUS_IBATT in that order */ ret = io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FLAGS, regs, sizeof(regs) / sizeof(regs[0])); if (ret != OK) return ret; _status = regs[0]; _alarms = regs[1]; /* XXX handle status */ /* XXX handle alarms */ /* only publish if battery has a valid minimum voltage */ if (regs[2] > 3300) { battery_status_s battery_status; battery_status.timestamp = hrt_absolute_time(); /* voltage is scaled to mV */ battery_status.voltage_v = regs[2] / 1000.0f; /* current scaling should be to cA in order to avoid limiting at 65A */ battery_status.current_a = regs[3] / 100.f; /* this requires integration over time - not currently implemented */ battery_status.discharged_mah = -1.0f; /* lazily publish the battery voltage */ if (_to_battery > 0) { orb_publish(ORB_ID(battery_status), _to_battery, &battery_status); } else { _to_battery = orb_advertise(ORB_ID(battery_status), &battery_status); } } return ret; } int PX4IO::io_get_raw_rc_input(rc_input_values &input_rc) { uint16_t channel_count; int ret; input_rc.timestamp = hrt_absolute_time(); /* we don't have the status bits, so input_source has to be set elsewhere */ input_rc.input_source = RC_INPUT_SOURCE_UNKNOWN; /* * XXX Because the channel count and channel data are fetched * separately, there is a risk of a race between the two * that could leave us with channel data and a count that * are out of sync. * Fixing this would require a guarantee of atomicity from * IO, and a single fetch for both count and channels. * * XXX Since IO has the input calibration info, we ought to be * able to get the pre-fixed-up controls directly. * * XXX can we do this more cheaply? If we knew we had DMA, it would * almost certainly be better to just get all the inputs... */ ret = io_reg_get(PX4IO_PAGE_RAW_RC_INPUT, PX4IO_P_RAW_RC_COUNT, &channel_count, 1); if (ret != OK) return ret; input_rc.channel_count = channel_count; if (channel_count > 0) ret = io_reg_get(PX4IO_PAGE_RAW_RC_INPUT, PX4IO_P_RAW_RC_BASE, input_rc.values, channel_count); return ret; } int PX4IO::io_publish_raw_rc() { /* if no RC, just don't publish */ if (!(_status & PX4IO_P_STATUS_FLAGS_RC_OK)) return OK; /* fetch values from IO */ rc_input_values rc_val; rc_val.timestamp = hrt_absolute_time(); int ret = io_get_raw_rc_input(rc_val); if (ret != OK) return ret; /* sort out the source of the values */ if (_status & PX4IO_P_STATUS_FLAGS_RC_PPM) { rc_val.input_source = RC_INPUT_SOURCE_PX4IO_PPM; } else if (_status & PX4IO_P_STATUS_FLAGS_RC_DSM) { rc_val.input_source = RC_INPUT_SOURCE_PX4IO_SPEKTRUM; } else if (_status & PX4IO_P_STATUS_FLAGS_RC_SBUS) { rc_val.input_source = RC_INPUT_SOURCE_PX4IO_SBUS; } else { rc_val.input_source = RC_INPUT_SOURCE_UNKNOWN; } /* lazily advertise on first publication */ if (_to_input_rc == 0) { _to_input_rc = orb_advertise(ORB_ID(input_rc), &rc_val); } else { orb_publish(ORB_ID(input_rc), _to_input_rc, &rc_val); } return OK; } int PX4IO::io_publish_mixed_controls() { /* if no FMU comms(!) just don't publish */ if (!(_status & PX4IO_P_STATUS_FLAGS_FMU_OK)) return OK; /* if not taking raw PPM from us, must be mixing */ if (_status & PX4IO_P_STATUS_FLAGS_RAW_PPM) return OK; /* data we are going to fetch */ actuator_controls_effective_s controls_effective; controls_effective.timestamp = hrt_absolute_time(); /* get actuator controls from IO */ uint16_t act[_max_actuators]; int ret = io_reg_get(PX4IO_PAGE_ACTUATORS, 0, act, _max_actuators); if (ret != OK) return ret; /* convert from register format to float */ for (unsigned i = 0; i < _max_actuators; i++) controls_effective.control_effective[i] = REG_TO_FLOAT(act[i]); /* laxily advertise on first publication */ if (_to_actuators_effective == 0) { _to_actuators_effective = orb_advertise((_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE : ORB_ID(actuator_controls_effective_1)), &controls_effective); } else { orb_publish((_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE : ORB_ID(actuator_controls_effective_1)), _to_actuators_effective, &controls_effective); } return OK; } int PX4IO::io_publish_pwm_outputs() { /* if no FMU comms(!) just don't publish */ if (!(_status & PX4IO_P_STATUS_FLAGS_FMU_OK)) return OK; /* data we are going to fetch */ actuator_outputs_s outputs; outputs.timestamp = hrt_absolute_time(); /* get servo values from IO */ uint16_t ctl[_max_actuators]; int ret = io_reg_get(PX4IO_PAGE_SERVOS, 0, ctl, _max_actuators); if (ret != OK) return ret; /* convert from register format to float */ for (unsigned i = 0; i < _max_actuators; i++) outputs.output[i] = REG_TO_FLOAT(ctl[i]); outputs.noutputs = _max_actuators; /* lazily advertise on first publication */ if (_to_outputs == 0) { _to_outputs = orb_advertise((_primary_pwm_device ? ORB_ID_VEHICLE_CONTROLS : ORB_ID(actuator_outputs_1)), &outputs); } else { orb_publish((_primary_pwm_device ? ORB_ID_VEHICLE_CONTROLS : ORB_ID(actuator_outputs_1)), _to_outputs, &outputs); } return OK; } int PX4IO::io_reg_set(uint8_t page, uint8_t offset, const uint16_t *values, unsigned num_values) { i2c_msg_s msgv[2]; uint8_t hdr[2]; hdr[0] = page; hdr[1] = offset; msgv[0].flags = 0; msgv[0].buffer = hdr; msgv[0].length = sizeof(hdr); msgv[1].flags = 0; msgv[1].buffer = (uint8_t *)(values); msgv[1].length = num_values * sizeof(*values); return transfer(msgv, 2); } int PX4IO::io_reg_set(uint8_t page, uint8_t offset, uint16_t value) { return io_reg_set(page, offset, &value, 1); } int PX4IO::io_reg_get(uint8_t page, uint8_t offset, uint16_t *values, unsigned num_values) { i2c_msg_s msgv[2]; uint8_t hdr[2]; hdr[0] = page; hdr[1] = offset; msgv[0].flags = 0; msgv[0].buffer = hdr; msgv[0].length = sizeof(hdr); msgv[1].flags = I2C_M_READ; msgv[1].buffer = (uint8_t *)values; msgv[1].length = num_values * sizeof(*values); return transfer(msgv, 2); } uint32_t PX4IO::io_reg_get(uint8_t page, uint8_t offset) { uint16_t value; if (io_reg_get(page, offset, &value, 1)) return _io_reg_get_error; return value; } int PX4IO::io_reg_modify(uint8_t page, uint8_t offset, uint16_t clearbits, uint16_t setbits) { int ret; uint16_t value; ret = io_reg_get(page, offset, &value, 1); if (ret) return ret; value &= ~clearbits; value |= setbits; return io_reg_set(page, offset, &value, 1); } int PX4IO::mixer_send(const char *buf, unsigned buflen) { uint8_t frame[_max_transfer]; px4io_mixdata *msg = (px4io_mixdata *)&frame[0]; unsigned max_len = _max_transfer - sizeof(px4io_mixdata); msg->f2i_mixer_magic = F2I_MIXER_MAGIC; msg->action = F2I_MIXER_ACTION_RESET; do { unsigned count = buflen; if (count > max_len) count = max_len; if (count > 0) { memcpy(&msg->text[0], buf, count); buf += count; buflen -= count; } /* * We have to send an even number of bytes. This * will only happen on the very last transfer of a * mixer, and we are guaranteed that there will be * space left to round up as _max_transfer will be * even. */ unsigned total_len = sizeof(px4io_mixdata) + count; if (total_len % 1) { msg->text[count] = '\0'; total_len++; } int ret = io_reg_set(PX4IO_PAGE_MIXERLOAD, 0, (uint16_t *)frame, total_len / 2); if (ret) { log("mixer send error %d", ret); return ret; } msg->action = F2I_MIXER_ACTION_APPEND; } while (buflen > 0); /* check for the mixer-OK flag */ if (io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FLAGS) & PX4IO_P_STATUS_FLAGS_MIXER_OK) return 0; /* load must have failed for some reason */ return -EINVAL; } int PX4IO::ioctl(file *filep, int cmd, unsigned long arg) { int ret = OK; /* regular ioctl? */ switch (cmd) { case PWM_SERVO_ARM: /* set the 'armed' bit */ ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_ARMING, 0, PX4IO_P_SETUP_ARMING_ARM_OK); break; case PWM_SERVO_DISARM: /* clear the 'armed' bit */ ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_ARMING, PX4IO_P_SETUP_ARMING_ARM_OK, 0); break; case PWM_SERVO_SET_UPDATE_RATE: /* set the requested rate */ if ((arg >= 50) && (arg <= 400)) { ret = io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_PWM_HIGHRATE, arg); } else { ret = -EINVAL; } break; case PWM_SERVO_SET(0) ... PWM_SERVO_SET(PWM_OUTPUT_MAX_CHANNELS): { unsigned channel = cmd - PWM_SERVO_SET(0); if ((channel >= _max_actuators) || (arg < 900) || (arg > 2100)) { ret = -EINVAL; } else { /* send a direct PWM value */ ret = io_reg_set(PX4IO_PAGE_DIRECT_PWM, channel, arg); } break; } case PWM_SERVO_GET(0) ... PWM_SERVO_GET(PWM_OUTPUT_MAX_CHANNELS): { unsigned channel = cmd - PWM_SERVO_GET(0); if (channel >= _max_actuators) { ret = -EINVAL; } else { /* fetch a current PWM value */ uint32_t value = io_reg_get(PX4IO_PAGE_DIRECT_PWM, channel); if (value == _io_reg_get_error) { ret = -EIO; } else { *(servo_position_t *)arg = value; } } break; } case GPIO_RESET: ret = io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, 0); break; case GPIO_SET: arg &= ((1 << _max_relays) - 1); ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, 0, arg); break; case GPIO_CLEAR: arg &= ((1 << _max_relays) - 1); ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, arg, 0); break; case GPIO_GET: *(uint32_t *)arg = io_reg_get(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS); if (*(uint32_t *)arg == _io_reg_get_error) ret = -EIO; break; case MIXERIOCGETOUTPUTCOUNT: *(unsigned *)arg = _max_actuators; break; case MIXERIOCRESET: ret = 0; /* load always resets */ break; case MIXERIOCLOADBUF: ret = mixer_send((const char *)arg, strnlen(_mix_buf, 1024)); break; default: /* not a recognised value */ ret = -ENOTTY; } return ret; } ssize_t PX4IO::write(file *filp, const char *buffer, size_t len) { unsigned count = len / 2; int ret; if (count > 0) { if (count > _max_actuators) count = _max_actuators; ret = io_reg_set(PX4IO_PAGE_DIRECT_PWM, 0, (uint16_t *)buffer, count); } else { ret = -EINVAL; } return ret; } extern "C" __EXPORT int px4io_main(int argc, char *argv[]); namespace { void test(void) { int fd; fd = open(PWM_OUTPUT_DEVICE_PATH, 0); if (fd < 0) { puts("open fail"); exit(1); } ioctl(fd, PWM_SERVO_ARM, 0); ioctl(fd, PWM_SERVO_SET(0), 1000); ioctl(fd, PWM_SERVO_SET(1), 1100); ioctl(fd, PWM_SERVO_SET(2), 1200); ioctl(fd, PWM_SERVO_SET(3), 1300); ioctl(fd, PWM_SERVO_SET(4), 1400); ioctl(fd, PWM_SERVO_SET(5), 1500); ioctl(fd, PWM_SERVO_SET(6), 1600); ioctl(fd, PWM_SERVO_SET(7), 1700); close(fd); actuator_armed_s aa; aa.armed = true; aa.lockdown = false; orb_advertise(ORB_ID(actuator_armed), &aa); exit(0); } void monitor(void) { unsigned cancels = 3; printf("Hit three times to exit monitor mode\n"); for (;;) { pollfd fds[1]; fds[0].fd = 0; fds[0].events = POLLIN; poll(fds, 1, 500); if (fds[0].revents == POLLIN) { int c; read(0, &c, 1); if (cancels-- == 0) exit(0); } #warning implement this // if (g_dev != nullptr) // g_dev->dump_one = true; } } } int px4io_main(int argc, char *argv[]) { if (!strcmp(argv[1], "start")) { if (g_dev != nullptr) errx(1, "already loaded"); /* create the driver - it will set g_dev */ (void)new PX4IO; if (g_dev == nullptr) errx(1, "driver alloc failed"); if (OK != g_dev->init()) { delete g_dev; errx(1, "driver init failed"); } /* look for the optional pwm update rate for the supported modes */ if (strcmp(argv[2], "-u") == 0 || strcmp(argv[2], "--update-rate") == 0) { if (argc > 2 + 1) { #warning implement this } else { fprintf(stderr, "missing argument for pwm update rate (-u)\n"); return 1; } } exit(0); } if (!strcmp(argv[1], "stop")) { if (g_dev != nullptr) { /* stop the driver */ delete g_dev; } else { errx(1, "not loaded"); } exit(0); } if (!strcmp(argv[1], "status")) { if (g_dev != nullptr) printf("[px4io] loaded\n"); else printf("[px4io] not loaded\n"); exit(0); } /* note, stop not currently implemented */ if (!strcmp(argv[1], "update")) { if (g_dev != nullptr) { printf("[px4io] loaded, detaching first\n"); /* stop the driver */ delete g_dev; } PX4IO_Uploader *up; const char *fn[3]; /* work out what we're uploading... */ if (argc > 2) { fn[0] = argv[2]; fn[1] = nullptr; } else { fn[0] = "/fs/microsd/px4io.bin"; fn[1] = "/etc/px4io.bin"; fn[2] = nullptr; } up = new PX4IO_Uploader; int ret = up->upload(&fn[0]); delete up; switch (ret) { case OK: break; case -ENOENT: errx(1, "PX4IO firmware file not found"); case -EEXIST: case -EIO: errx(1, "error updating PX4IO - check that bootloader mode is enabled"); case -EINVAL: errx(1, "verify failed - retry the update"); case -ETIMEDOUT: errx(1, "timed out waiting for bootloader - power-cycle and try again"); default: errx(1, "unexpected error %d", ret); } return ret; } if (!strcmp(argv[1], "rx_dsm") || !strcmp(argv[1], "rx_dsm_10bit") || !strcmp(argv[1], "rx_dsm_11bit") || !strcmp(argv[1], "rx_sbus") || !strcmp(argv[1], "rx_ppm")) errx(0, "receiver type is automatically detected, option '%s' is deprecated", argv[1]); if (!strcmp(argv[1], "test")) test(); if (!strcmp(argv[1], "monitor")) monitor(); errx(1, "need a command, try 'start', 'stop', 'status', 'test', 'monitor' or 'update'"); }