/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_cfft_radix2_q31.c * * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupTransforms */ /** * @defgroup Radix2_CFFT_CIFFT Radix-2 Complex FFT Functions * * \par * Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT). * Computational complexity of CFFT reduces drastically when compared to DFT. */ /** * @addtogroup Radix2_CFFT_CIFFT * @{ */ /** * @details * @brief Processing function for the fixed-point CFFT/CIFFT. * @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @return none. */ void arm_cfft_radix2_q31( const arm_cfft_radix2_instance_q31 * S, q31_t * pSrc) { if(S->ifftFlag == 1u) { arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } else { arm_radix2_butterfly_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } /** * @} end of Radix2_CFFT_CIFFT group */ void arm_radix2_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { int i, j, k, l; int n1, n2, ia; q31_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) + ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) - ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // groups loop end twidCoefModifier = twidCoefModifier << 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) + ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) - ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end } void arm_radix2_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { int i, j, k, l; int n1, n2, ia; q31_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) - ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) + ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // groups loop end twidCoefModifier = twidCoefModifier << 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) - ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) + ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end }