/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: @author Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mavlink.c * MAVLink 1.0 protocol implementation. */ #include #include #include #include #include #include #include #include #include "mavlink_bridge_header.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "waypoints.h" #include "mavlink_log.h" __EXPORT int mavlink_main(int argc, char *argv[]); /* terminate MAVLink on user request - disabled by default */ static bool mavlink_link_termination_allowed = false; static bool mavlink_exit_requested = false; static int system_type = MAV_TYPE_FIXED_WING; mavlink_system_t mavlink_system = {100, 50}; // System ID, 1-255, Component/Subsystem ID, 1-255 static uint8_t chan = MAVLINK_COMM_0; static mavlink_status_t status; /* pthreads */ static pthread_t receive_thread; static pthread_t uorb_receive_thread; static uint16_t mavlink_message_intervals[256]; /**< intervals at which to send MAVLink packets */ /* Allocate storage space for waypoints */ mavlink_wpm_storage wpm_s; /* Global position */ static struct vehicle_global_position_s global_pos = {0}; /* Local position */ static struct vehicle_local_position_s local_pos = {0}; /* Vehicle status */ static struct vehicle_status_s v_status = {0}; /* RC channels */ static struct rc_channels_s rc = {0}; /* HIL publishers */ static int pub_hil_attitude = -1; static struct vehicle_attitude_s hil_attitude = {0}; static struct vehicle_global_position_s hil_global_pos = {0}; static struct fixedwing_control_s fw_control = {0}; static struct ardrone_motors_setpoint_s ardrone_motors = {0}; static struct vehicle_command_s vcmd = {0}; static int pub_hil_global_pos = -1; static int ardrone_motors_pub = -1; static int cmd_pub = -1; static int global_pos_sub = -1; static int local_pos_sub = -1; static int global_position_setpoint_pub = -1; static int local_position_setpoint_pub = -1; static bool mavlink_hil_enabled = false; static char mavlink_message_string[51] = {0}; /* 3: Define waypoint helper functions */ void mavlink_wpm_send_message(mavlink_message_t *msg); void mavlink_wpm_send_gcs_string(const char *string); uint64_t mavlink_wpm_get_system_timestamp(void); void mavlink_missionlib_send_message(mavlink_message_t *msg); void mavlink_missionlib_send_gcs_string(const char *string); uint64_t mavlink_missionlib_get_system_timestamp(void); /* 4: Include waypoint protocol */ #include "waypoints.h" mavlink_wpm_storage *wpm; #include "mavlink_parameters.h" static uint8_t missionlib_msg_buf[MAVLINK_MAX_PACKET_LEN]; void mavlink_missionlib_send_message(mavlink_message_t *msg) { uint16_t len = mavlink_msg_to_send_buffer(missionlib_msg_buf, msg); write(uart, missionlib_msg_buf, len); } void mavlink_missionlib_send_gcs_string(const char *string) { const int len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN; mavlink_statustext_t statustext; int i = 0; while (i < len - 1) { statustext.text[i] = string[i]; if (string[i] == '\0') break; i++; } if (i > 1) { /* Enforce null termination */ statustext.text[i] = '\0'; mavlink_message_t msg; mavlink_msg_statustext_encode(mavlink_system.sysid, mavlink_system.compid, &msg, &statustext); mavlink_missionlib_send_message(&msg); } } /* * Get system time since boot in microseconds * * @return the system time since boot in microseconds */ uint64_t mavlink_missionlib_get_system_timestamp() { return hrt_absolute_time(); } extern void mavlink_missionlib_current_waypoint_changed(uint16_t index, float param1, float param2, float param3, float param4, float param5_lat_x, float param6_lon_y, float param7_alt_z, uint8_t frame, uint16_t command) { /* Update controller setpoints */ if (frame == (int)MAV_FRAME_GLOBAL) { /* global, absolute waypoint */ struct vehicle_global_position_setpoint_s sp; sp.lat = param5_lat_x * 1e7; sp.lon = param6_lon_y * 1e7; sp.altitude = param7_alt_z; sp.altitude_is_relative = false; sp.yaw = (param4 / 180.0f) * ((float)M_PI) - ((float)M_PI); orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp); } else if (frame == (int)MAV_FRAME_GLOBAL_RELATIVE_ALT) { /* global, relative alt (in relation to HOME) waypoint */ struct vehicle_global_position_setpoint_s sp; sp.lat = param5_lat_x * 1e7; sp.lon = param6_lon_y * 1e7; sp.altitude = param7_alt_z; sp.altitude_is_relative = true; sp.yaw = (param4 / 180.0f) * ((float)M_PI) - ((float)M_PI); orb_publish(ORB_ID(vehicle_global_position_setpoint), global_position_setpoint_pub, &sp); } else if (frame == (int)MAV_FRAME_LOCAL_ENU || frame == (int)MAV_FRAME_LOCAL_NED) { /* local, absolute waypoint */ struct vehicle_local_position_setpoint_s sp; sp.x = param5_lat_x; sp.y = param6_lon_y; sp.z = param7_alt_z; sp.yaw = (param4 / 180.0f) * ((float)M_PI) - ((float)M_PI); orb_publish(ORB_ID(vehicle_local_position_setpoint), local_position_setpoint_pub, &sp); } //printf("[mavlink mp] new setpoint: frame: %d, lat: %d, lon: %d, alt: %d, yaw: %d\n", frame, param5_lat_x*1000, param6_lon_y*1000, param7_alt_z*1000, param4*1000); } void handleMessage(mavlink_message_t *msg); /** * Enable / disable Hardware in the Loop simulation mode. */ int set_hil_on_off(uint8_t vehicle_mode) { int ret = OK; /* Enable HIL */ if ((vehicle_mode & MAV_MODE_FLAG_HIL_ENABLED) && !mavlink_hil_enabled) { //printf("\n HIL ON \n"); (void)close(pub_hil_attitude); (void)close(pub_hil_global_pos); /* Advertise topics */ pub_hil_attitude = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude); pub_hil_global_pos = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos); printf("\n pub_hil_attitude :%i\n", pub_hil_attitude); printf("\n pub_hil_global_pos :%i\n", pub_hil_global_pos); if (pub_hil_attitude > 0 && pub_hil_global_pos > 0) { mavlink_hil_enabled = true; } else { ret = ERROR; } } if (!(vehicle_mode & MAV_MODE_FLAG_HIL_ENABLED) && mavlink_hil_enabled) { mavlink_hil_enabled = false; (void)close(pub_hil_attitude); (void)close(pub_hil_global_pos); } else { ret = ERROR; } return ret; } /** * Translate the custom state into standard mavlink modes and state. */ void get_mavlink_mode_and_state(const struct vehicle_status_s *c_status, uint8_t *mavlink_state, uint8_t *mavlink_mode) { //TODO: Make this correct switch (c_status->state_machine) { case SYSTEM_STATE_PREFLIGHT: if (c_status->preflight_gyro_calibration || c_status->preflight_mag_calibration) { *mavlink_state = MAV_STATE_CALIBRATING; *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; } else { *mavlink_state = MAV_STATE_UNINIT; *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; } break; case SYSTEM_STATE_STANDBY: *mavlink_state = MAV_STATE_STANDBY; *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_GROUND_READY: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_MANUAL: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; *mavlink_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case SYSTEM_STATE_STABILIZED: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; *mavlink_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; break; case SYSTEM_STATE_AUTO: *mavlink_state = MAV_STATE_ACTIVE; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; *mavlink_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; break; case SYSTEM_STATE_MISSION_ABORT: *mavlink_state = MAV_STATE_EMERGENCY; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_EMCY_LANDING: *mavlink_state = MAV_STATE_EMERGENCY; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_EMCY_CUTOFF: *mavlink_state = MAV_STATE_EMERGENCY; *mavlink_mode |= MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_GROUND_ERROR: *mavlink_state = MAV_STATE_EMERGENCY; *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; break; case SYSTEM_STATE_REBOOT: *mavlink_state = MAV_STATE_POWEROFF; *mavlink_mode &= ~MAV_MODE_FLAG_SAFETY_ARMED; break; } } /** * Receive data from UART. */ static void *receiveloop(void *arg) { uint8_t ch; mavlink_message_t msg; prctl(PR_SET_NAME, "mavlink uart rcv", getpid()); while (1) { if (mavlink_exit_requested) break; /* blocking read on next byte */ int nread = read(uart, &ch, 1); if (nread > 0 && mavlink_parse_char(chan, ch, &msg, &status)) { //parse the char /* handle generic messages and commands */ handleMessage(&msg); /* Handle packet with waypoint component */ mavlink_wpm_message_handler(&msg, &global_pos, &local_pos); /* Handle packet with parameter component */ mavlink_pm_message_handler(MAVLINK_COMM_0, &msg); msg.msgid = -1; } } return NULL; } /** * Listen for uORB topics and send via MAVLink. * * This pthread performs a blocking wait on selected * uORB topics and sends them via MAVLink to other * vehicles or a ground control station. */ static void *uorb_receiveloop(void *arg) { /* Set thread name */ prctl(PR_SET_NAME, "mavlink uORB", getpid()); /* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */ /* number of messages */ const ssize_t fdsc = 15; /* Sanity check variable and index */ ssize_t fdsc_count = 0; /* file descriptors to wait for */ struct pollfd fds[fdsc]; union { struct sensor_combined_s raw; struct vehicle_attitude_s att; struct vehicle_gps_position_s gps; struct ardrone_control_s ar_control; struct vehicle_local_position_setpoint_s local_sp; struct vehicle_global_position_setpoint_s global_sp; } buf; /* --- SENSORS RAW VALUE --- */ /* subscribe to ORB for sensors raw */ int sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); orb_set_interval(sensor_sub, 100); /* 10Hz updates */ fds[fdsc_count].fd = sensor_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ATTITUDE VALUE --- */ /* subscribe to ORB for attitude */ int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); orb_set_interval(att_sub, 100); /* 10Hz updates */ fds[fdsc_count].fd = att_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GPS VALUE --- */ /* subscribe to ORB for attitude */ int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); orb_set_interval(gps_sub, 1000); /* 1Hz updates */ fds[fdsc_count].fd = gps_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- ARDRONE CONTROL --- */ /* subscribe to ORB for AR.Drone controller outputs */ int ar_sub = orb_subscribe(ORB_ID(ardrone_control)); orb_set_interval(ar_sub, 200); /* 5Hz updates */ fds[fdsc_count].fd = ar_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- SYSTEM STATE --- */ /* struct already globally allocated */ /* subscribe to topic */ int status_sub = orb_subscribe(ORB_ID(vehicle_status)); orb_set_interval(status_sub, 300); /* max 3.33 Hz updates */ fds[fdsc_count].fd = status_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- RC CHANNELS VALUE --- */ /* struct already globally allocated */ /* subscribe to ORB for global position */ int rc_sub = orb_subscribe(ORB_ID(rc_channels)); orb_set_interval(rc_sub, 100); /* 10Hz updates */ fds[fdsc_count].fd = rc_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- FIXED WING CONTROL VALUE --- */ /* struct already globally allocated */ /* subscribe to ORB for fixed wing control */ int fw_sub = orb_subscribe(ORB_ID(fixedwing_control)); orb_set_interval(fw_sub, 50); /* 20 Hz updates */ fds[fdsc_count].fd = fw_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GLOBAL POS VALUE --- */ /* struct already globally allocated and topic already subscribed */ fds[fdsc_count].fd = global_pos_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- LOCAL POS VALUE --- */ /* struct and topic already globally subscribed */ fds[fdsc_count].fd = local_pos_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- GLOBAL SETPOINT VALUE --- */ /* subscribe to ORB for local setpoint */ /* struct already allocated */ int spg_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint)); orb_set_interval(spg_sub, 2000); /* 0.5 Hz updates */ fds[fdsc_count].fd = spg_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; /* --- LOCAL SETPOINT VALUE --- */ /* subscribe to ORB for local setpoint */ /* struct already allocated */ int spl_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint)); orb_set_interval(spl_sub, 2000); /* 0.5 Hz updates */ fds[fdsc_count].fd = spl_sub; fds[fdsc_count].events = POLLIN; fdsc_count++; unsigned int sensors_raw_counter = 0; unsigned int attitude_counter = 0; unsigned int gps_counter = 0; /* WARNING: If you get the error message below, * then the number of registered messages (fdsc) * differs from the number of messages in the above list. */ if (fdsc_count > fdsc) { fprintf(stderr, "[mavlink] WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__); fdsc_count = fdsc; } /* * set up poll to block for new data, * wait for a maximum of 1000 ms (1 second) */ const int timeout = 5000; while (1) { if (mavlink_exit_requested) break; int poll_ret = poll(fds, fdsc_count, timeout); /* handle the poll result */ if (poll_ret == 0) { /* XXX this means none of our providers is giving us data - might be an error? */ } else if (poll_ret < 0) { /* XXX this is seriously bad - should be an emergency */ } else { /* --- SENSORS RAW VALUE --- */ if (fds[0].revents & POLLIN) { /* copy sensors raw data into local buffer */ orb_copy(ORB_ID(sensor_combined), sensor_sub, &buf.raw); /* send raw imu data */ mavlink_msg_raw_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_raw[0], buf.raw.accelerometer_raw[1], buf.raw.accelerometer_raw[2], buf.raw.gyro_raw[0], buf.raw.gyro_raw[1], buf.raw.gyro_raw[2], buf.raw.magnetometer_raw[0], buf.raw.magnetometer_raw[1], buf.raw.magnetometer_raw[2]); /* send scaled imu data */ mavlink_msg_scaled_imu_send(MAVLINK_COMM_0, buf.raw.timestamp, buf.raw.accelerometer_m_s2[0] * 9810, buf.raw.accelerometer_m_s2[1] * 9810, buf.raw.accelerometer_m_s2[2] * 9810, buf.raw.gyro_rad_s[0] * 1000, buf.raw.gyro_rad_s[1] * 1000, buf.raw.gyro_rad_s[2] * 1000, buf.raw.magnetometer_ga[0] * 1000, buf.raw.magnetometer_ga[1] * 1000, buf.raw.magnetometer_ga[2] * 1000); /* send pressure */ mavlink_msg_scaled_pressure_send(MAVLINK_COMM_0, buf.raw.timestamp / 1000, buf.raw.baro_pres_mbar, buf.raw.baro_alt_meter, buf.raw.baro_temp_celcius * 100); sensors_raw_counter++; } /* --- ATTITUDE VALUE --- */ if (fds[1].revents & POLLIN) { /* copy attitude data into local buffer */ orb_copy(ORB_ID(vehicle_attitude), att_sub, &buf.att); /* send sensor values */ mavlink_msg_attitude_send(MAVLINK_COMM_0, buf.att.timestamp / 1000, buf.att.roll, buf.att.pitch, buf.att.yaw, buf.att.rollspeed, buf.att.pitchspeed, buf.att.yawspeed); attitude_counter++; } /* --- GPS VALUE --- */ if (fds[2].revents & POLLIN) { /* copy gps data into local buffer */ orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &buf.gps); /* GPS position */ mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0, buf.gps.timestamp, buf.gps.fix_type, buf.gps.lat, buf.gps.lon, buf.gps.alt, buf.gps.eph, buf.gps.epv, buf.gps.vel, buf.gps.cog, buf.gps.satellites_visible); if (buf.gps.satellite_info_available && (gps_counter % 4 == 0)) { mavlink_msg_gps_status_send(MAVLINK_COMM_0, buf.gps.satellites_visible, buf.gps.satellite_prn, buf.gps.satellite_used, buf.gps.satellite_elevation, buf.gps.satellite_azimuth, buf.gps.satellite_snr); } gps_counter++; } /* --- ARDRONE CONTROL OUTPUTS --- */ if (fds[3].revents & POLLIN) { /* copy ardrone control data into local buffer */ orb_copy(ORB_ID(ardrone_control), ar_sub, &buf.ar_control); uint64_t timestamp = buf.ar_control.timestamp; float setpoint_roll = buf.ar_control.setpoint_attitude[0]; float setpoint_pitch = buf.ar_control.setpoint_attitude[1]; float setpoint_yaw = buf.ar_control.setpoint_attitude[2]; float setpoint_thrust = buf.ar_control.setpoint_thrust_cast; float control_roll = buf.ar_control.attitude_control_output[0]; float control_pitch = buf.ar_control.attitude_control_output[1]; float control_yaw = buf.ar_control.attitude_control_output[2]; mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, timestamp / 1000, setpoint_roll, setpoint_pitch, setpoint_yaw, setpoint_thrust); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.roll", control_roll); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.pitch", control_pitch); mavlink_msg_named_value_float_send(MAVLINK_COMM_0, timestamp / 1000, "cl.yaw", control_yaw); } /* --- SYSTEM STATUS --- */ if (fds[4].revents & POLLIN) { /* immediately communicate state changes back to user */ orb_copy(ORB_ID(vehicle_status), status_sub, &v_status); /* enable or disable HIL */ set_hil_on_off(v_status.mode); /* translate the current syste state to mavlink state and mode */ uint8_t mavlink_state = 0; uint8_t mavlink_mode = v_status.mode; get_mavlink_mode_and_state(&v_status, &mavlink_state, &mavlink_mode); /* send heartbeat */ mavlink_msg_heartbeat_send(chan, system_type, MAV_AUTOPILOT_GENERIC, mavlink_mode, v_status.state_machine, mavlink_state); } /* --- RC CHANNELS --- */ if (fds[5].revents & POLLIN) { /* copy rc channels into local buffer */ orb_copy(ORB_ID(rc_channels), rc_sub, &rc); /* Channels are sent in MAVLink main loop at a fixed interval */ // TODO decide where to send channels } /* --- FIXED WING CONTROL CHANNELS --- */ if (fds[6].revents & POLLIN) { /* copy fixed wing control into local buffer */ orb_copy(ORB_ID(fixedwing_control), fw_sub, &fw_control); /* send control output via MAVLink */ mavlink_msg_roll_pitch_yaw_thrust_setpoint_send(MAVLINK_COMM_0, fw_control.timestamp / 1000, fw_control.attitude_control_output[0], fw_control.attitude_control_output[1], fw_control.attitude_control_output[2], fw_control.attitude_control_output[3]); /* Only send in HIL mode */ if (v_status.mode & MAV_MODE_FLAG_HIL_ENABLED) { /* Send the desired attitude from RC or from the autonomous controller */ // XXX it should not depend on a RC setting, but on a system_state value float roll_ail, pitch_elev, throttle, yaw_rudd; if (rc.chan[rc.function[OVERRIDE]].scale < 2000) { //orb_copy(ORB_ID(fixedwing_control), fixed_wing_control_sub, &fixed_wing_control); roll_ail = fw_control.attitude_control_output[ROLL]; pitch_elev = fw_control.attitude_control_output[PITCH]; throttle = fw_control.attitude_control_output[THROTTLE]; yaw_rudd = fw_control.attitude_control_output[YAW]; } else { roll_ail = rc.chan[rc.function[ROLL]].scale; pitch_elev = rc.chan[rc.function[PITCH]].scale; throttle = rc.chan[rc.function[THROTTLE]].scale; yaw_rudd = rc.chan[rc.function[YAW]].scale; } /* hacked HIL implementation in order for the APM Planner to work * (correct cmd: mavlink_msg_hil_controls_send()) */ mavlink_msg_rc_channels_scaled_send(chan, hrt_absolute_time(), 0, // port 0 roll_ail, pitch_elev, throttle, yaw_rudd, 0, 0, 0, 0, 1 /*rssi=1*/); /* correct command duplicate */ mavlink_msg_hil_controls_send(chan, hrt_absolute_time(), roll_ail, pitch_elev, yaw_rudd, throttle, 0, 0, 0, 0, 32, /* HIL_MODE */ 0); } } /* --- VEHICLE GLOBAL POSITION --- */ if (fds[7].revents & POLLIN) { /* copy global position data into local buffer */ orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos); uint64_t timestamp = global_pos.timestamp; int32_t lat = global_pos.lat; int32_t lon = global_pos.lon; int32_t alt = (int32_t)(global_pos.alt*1000); int32_t relative_alt = (int32_t)(global_pos.relative_alt * 1000.0f); int16_t vx = (int16_t)(global_pos.vx * 100.0f); int16_t vy = (int16_t)(global_pos.vy * 100.0f); int16_t vz = (int16_t)(global_pos.vz * 100.0f); /* heading in degrees * 10, from 0 to 36.000) */ uint16_t hdg = (global_pos.hdg / M_PI_F) * (180.0f * 10.0f) + (180.0f * 10.0f); mavlink_msg_global_position_int_send(MAVLINK_COMM_0, timestamp / 1000, lat, lon, alt, relative_alt, vx, vy, vz, hdg); } /* --- VEHICLE LOCAL POSITION --- */ if (fds[8].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos); mavlink_msg_local_position_ned_send(MAVLINK_COMM_0, local_pos.timestamp / 1000, local_pos.x, local_pos.y, local_pos.z, local_pos.vx, local_pos.vy, local_pos.vz); } /* --- VEHICLE GLOBAL SETPOINT --- */ if (fds[9].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_global_position_setpoint), spg_sub, &buf.global_sp); uint8_t coordinate_frame = MAV_FRAME_GLOBAL; if (buf.global_sp.altitude_is_relative) coordinate_frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; mavlink_msg_global_position_setpoint_int_send(MAVLINK_COMM_0, coordinate_frame, buf.global_sp.lat, buf.global_sp.lon, buf.global_sp.altitude, buf.global_sp.yaw); } /* --- VEHICLE LOCAL SETPOINT --- */ if (fds[10].revents & POLLIN) { /* copy local position data into local buffer */ orb_copy(ORB_ID(vehicle_local_position_setpoint), spl_sub, &buf.local_sp); mavlink_msg_local_position_setpoint_send(MAVLINK_COMM_0, MAV_FRAME_LOCAL_NED, buf.local_sp.x, buf.local_sp.y, buf.local_sp.z, buf.local_sp.yaw); } } } return NULL; } /**************************************************************************** * MAVLink text message logger ****************************************************************************/ static int mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg); static const struct file_operations mavlink_fops = { .ioctl = mavlink_dev_ioctl }; static int mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg) { static unsigned int total_counter = 0; switch (cmd) { case (int)MAVLINK_IOC_SEND_TEXT_INFO: case (int)MAVLINK_IOC_SEND_TEXT_CRITICAL: case (int)MAVLINK_IOC_SEND_TEXT_EMERGENCY: { const char *txt = (const char *)arg; strncpy(mavlink_message_string, txt, 51); total_counter++; return OK; } default: return ENOTTY; } } /**************************************************************************** * Public Functions ****************************************************************************/ void handleMessage(mavlink_message_t *msg) { if (msg->msgid == MAVLINK_MSG_ID_COMMAND_LONG) { mavlink_command_long_t cmd_mavlink; mavlink_msg_command_long_decode(msg, &cmd_mavlink); if (cmd_mavlink.target_system == mavlink_system.sysid && ((cmd_mavlink.target_component == mavlink_system.compid) || (cmd_mavlink.target_component == MAV_COMP_ID_ALL))) { //check for MAVLINK terminate command if (cmd_mavlink.command == MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN && ((int)cmd_mavlink.param1) == 3) { /* This is the link shutdown command, terminate mavlink */ //TODO: check what happens with global_data buffers that are read by the mavlink app printf("[mavlink] Terminating .. \n"); fflush(stdout); usleep(50000); /* terminate other threads */ mavlink_exit_requested = true; pthread_cancel(receive_thread); pthread_cancel(uorb_receive_thread); pthread_exit(NULL); } else { /* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = cmd_mavlink.param1; vcmd.param2 = cmd_mavlink.param2; vcmd.param3 = cmd_mavlink.param3; vcmd.param4 = cmd_mavlink.param4; vcmd.param5 = cmd_mavlink.param5; vcmd.param6 = cmd_mavlink.param6; vcmd.param7 = cmd_mavlink.param7; vcmd.command = cmd_mavlink.command; vcmd.target_system = cmd_mavlink.target_system; vcmd.target_component = cmd_mavlink.target_component; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = cmd_mavlink.confirmation; /* Publish */ orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd); } } } if (msg->msgid == MAVLINK_MSG_ID_SET_MODE) { /* Set mode on request */ mavlink_set_mode_t new_mode; mavlink_msg_set_mode_decode(msg, &new_mode); /* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = new_mode.base_mode; vcmd.param2 = new_mode.custom_mode; vcmd.param3 = 0; vcmd.param4 = 0; vcmd.param5 = 0; vcmd.param6 = 0; vcmd.param7 = 0; vcmd.command = MAV_CMD_DO_SET_MODE; vcmd.target_system = new_mode.target_system; vcmd.target_component = MAV_COMP_ID_ALL; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = 1; /* create command */ orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd); } /* Handle quadrotor motor setpoints */ if (msg->msgid == MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT) { mavlink_set_quad_motors_setpoint_t quad_motors_setpoint; mavlink_msg_set_quad_motors_setpoint_decode(msg, &quad_motors_setpoint); // printf("got MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT target_system=%u, sysid = %u\n", quad_motors_setpoint.target_system, mavlink_system.sysid); if (quad_motors_setpoint.target_system == mavlink_system.sysid) { ardrone_motors.motor_front_nw = quad_motors_setpoint.motor_front_nw; ardrone_motors.motor_right_ne = quad_motors_setpoint.motor_right_ne; ardrone_motors.motor_back_se = quad_motors_setpoint.motor_back_se; ardrone_motors.motor_left_sw = quad_motors_setpoint.motor_left_sw; ardrone_motors.counter++; ardrone_motors.timestamp = hrt_absolute_time(); /* Publish */ orb_publish(ORB_ID(ardrone_motors_setpoint), ardrone_motors_pub, &ardrone_motors); } } /* * Only decode hil messages in HIL mode. * * The HIL mode is enabled by the HIL bit flag * in the system mode. Either send a set mode * COMMAND_LONG message or a SET_MODE message */ // printf("\n HIL ENABLED?: %s \n",(mavlink_hil_enabled)?"true":"false"); #define DEG2RAD ((1.0/180.0)*M_PI) if (mavlink_hil_enabled) { if (msg->msgid == MAVLINK_MSG_ID_HIL_STATE) { mavlink_hil_state_t hil_state; mavlink_msg_hil_state_decode(msg, &hil_state); // printf("\n HILSTATE : \n LAT: %i \n LON: %i \n ALT: %i \n " // "ROLL %i \n PITCH %i \n YAW %i \n" // "ROLLSPEED: %i \n PITCHSPEED: %i \n, YAWSPEED: %i \n", // hil_state.lat/1000000, // 1e7 // hil_state.lon/1000000, // 1e7 // hil_state.alt/1000, // mm // hil_state.roll, // float rad // hil_state.pitch, // float rad // hil_state.yaw, // float rad // hil_state.rollspeed, // float rad/s // hil_state.pitchspeed, // float rad/s // hil_state.yawspeed); // float rad/s hil_global_pos.lat = hil_state.lat; hil_global_pos.lon = hil_state.lon; hil_global_pos.alt = hil_state.alt/1000; hil_global_pos.vx = hil_state.vx; hil_global_pos.vy = hil_state.vy; hil_global_pos.vz = hil_state.vz; /* set timestamp and notify processes (broadcast) */ hil_global_pos.timestamp = hrt_absolute_time(); orb_publish(ORB_ID(vehicle_global_position), pub_hil_global_pos, &hil_global_pos); hil_attitude.roll = hil_state.roll; hil_attitude.pitch = hil_state.pitch; hil_attitude.yaw = hil_state.yaw; hil_attitude.rollspeed = hil_state.rollspeed; hil_attitude.pitchspeed = hil_state.pitchspeed; hil_attitude.yawspeed = hil_state.yawspeed; /* set timestamp and notify processes (broadcast) */ hil_attitude.counter++; hil_attitude.timestamp = hrt_absolute_time(); orb_publish(ORB_ID(vehicle_attitude), pub_hil_attitude, &hil_attitude); } // if (msg->msgid == MAVLINK_MSG_ID_ATTITUDE) { // mavlink_attitude_t att; // mavlink_msg_attitude_decode(msg, &att); // float RAD2DEG = 57.3f; // // printf("\n\n\n ATTITUDE \n\n\n %i \n", (int)(1000*att.rollspeed)); // global_data_lock(&global_data_attitude->access_conf); // global_data_attitude->roll = RAD2DEG * att.roll; // global_data_attitude->pitch = RAD2DEG * att.pitch; // global_data_attitude->yaw = RAD2DEG * att.yaw; // global_data_attitude->rollspeed = att.rollspeed; // global_data_attitude->pitchspeed = att.pitchspeed; // global_data_attitude->yawspeed = att.yawspeed; // global_data_attitude->counter++; // global_data_attitude->timestamp = hrt_absolute_time(); // global_data_unlock(&global_data_attitude->access_conf); // global_data_broadcast(&global_data_attitude->access_conf); // } // if (msg->msgid == MAVLINK_MSG_ID_RAW_IMU) { // mavlink_raw_imu_t imu; // mavlink_msg_raw_imu_decode(msg, &imu); // // printf("\n\n\n RAW_IMU : %i \n %i \n %i \n %i \n %i \n %i \n\n\n", (int)(1000*imu.xgyro), // // (int)(1000*imu.ygyro), (int)(1000*imu.zgyro)); // global_data_lock(&global_data_attitude->access_conf); // global_data_attitude->rollspeed = 1000 * imu.xgyro; // global_data_attitude->pitchspeed = 1000 * imu.ygyro; // global_data_attitude->yawspeed = 1000 * imu.zgyro; // global_data_attitude->counter++; // global_data_attitude->timestamp = hrt_absolute_time(); // global_data_unlock(&global_data_attitude->access_conf); // global_data_broadcast(&global_data_attitude->access_conf); // } // if (msg->msgid == MAVLINK_MSG_ID_SCALED_IMU) { // mavlink_raw_imu_t imu; // mavlink_msg_raw_imu_decode(msg, &imu); // // printf("\n\n\n SCALED_IMU : %i \n %i \n %i \n %i \n %i \n %i \n\n\n", (int)(1000*imu.xgyro), // // (int)(1000*imu.ygyro), (int)(1000*imu.zgyro)); // global_data_lock(&global_data_attitude->access_conf); // global_data_attitude->rollspeed = 1000 * imu.xgyro; // global_data_attitude->pitchspeed = 1000 * imu.ygyro; // global_data_attitude->yawspeed = 1000 * imu.zgyro; // global_data_attitude->counter++; // global_data_attitude->timestamp = hrt_absolute_time(); // global_data_unlock(&global_data_attitude->access_conf); // global_data_broadcast(&global_data_attitude->access_conf); // } } } int mavlink_open_uart(int baudrate, const char *uart_name, struct termios *uart_config_original, bool *is_usb) { /* process baud rate */ int speed; switch (baudrate) { case 0: speed = B0; break; case 50: speed = B50; break; case 75: speed = B75; break; case 110: speed = B110; break; case 134: speed = B134; break; case 150: speed = B150; break; case 200: speed = B200; break; case 300: speed = B300; break; case 600: speed = B600; break; case 1200: speed = B1200; break; case 1800: speed = B1800; break; case 2400: speed = B2400; break; case 4800: speed = B4800; break; case 9600: speed = B9600; break; case 19200: speed = B19200; break; case 38400: speed = B38400; break; case 57600: speed = B57600; break; case 115200: speed = B115200; break; case 230400: speed = B230400; break; case 460800: speed = B460800; break; case 921600: speed = B921600; break; default: fprintf(stderr, "[mavlink] ERROR: Unsupported baudrate: %d\n\tsupported examples:\n\n\t9600\n19200\n38400\n57600\n115200\n230400\n460800\n921600\n\n", baudrate); return -EINVAL; } /* open uart */ printf("[mavlink] UART is %s, baudrate is %d\n", uart_name, baudrate); uart = open(uart_name, O_RDWR | O_NOCTTY); /* Try to set baud rate */ struct termios uart_config; int termios_state; *is_usb = false; if (strcmp(uart_name, "/dev/ttyACM0") != OK) { /* Back up the original uart configuration to restore it after exit */ if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) { fprintf(stderr, "[mavlink] ERROR getting baudrate / termios config for %s: %d\n", uart_name, termios_state); close(uart); return -1; } /* Fill the struct for the new configuration */ tcgetattr(uart, &uart_config); /* Clear ONLCR flag (which appends a CR for every LF) */ uart_config.c_oflag &= ~ONLCR; /* Set baud rate */ if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n", uart_name, termios_state); close(uart); return -1; } if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\n", uart_name); close(uart); return -1; } } else { *is_usb = true; } return uart; } /** * MAVLink Protocol main function. */ int mavlink_main(int argc, char *argv[]) { wpm = &wpm_s; // print text printf("[mavlink] MAVLink v1.0 serial interface starting..\n"); // create the device node that's used for sending text log messages, etc. register_driver(MAVLINK_LOG_DEVICE, &mavlink_fops, 0666, NULL); /* Send attitude at 10 Hz / every 100 ms */ mavlink_message_intervals[MAVLINK_MSG_ID_ATTITUDE] = 100; /* Send raw sensor values at 10 Hz / every 100 ms */ mavlink_message_intervals[MAVLINK_MSG_ID_RAW_IMU] = 100; //default values for arguments char *uart_name = "/dev/ttyS0"; int baudrate = 115200; const char *commandline_usage = "\tusage: %s -d -b [-e/--exit-allowed]\n"; /* read program arguments */ int i; for (i = 1; i < argc; i++) { /* argv[0] is "mavlink" */ if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) { printf(commandline_usage, argv[0]); return 0; } /* UART device ID */ if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) { if (argc > i + 1) { uart_name = argv[i + 1]; } else { printf(commandline_usage, argv[0]); return 0; } } /* baud rate */ if (strcmp(argv[i], "-b") == 0 || strcmp(argv[i], "--baud") == 0) { if (argc > i + 1) { baudrate = atoi(argv[i + 1]); } else { printf(commandline_usage, argv[0]); return 0; } } /* terminating MAVLink is allowed - yes/no */ if (strcmp(argv[i], "-e") == 0 || strcmp(argv[i], "--exit-allowed") == 0) { mavlink_link_termination_allowed = true; } } struct termios uart_config_original; bool usb_uart; uart = mavlink_open_uart(baudrate, uart_name, &uart_config_original, &usb_uart); if (uart < 0) { printf("[mavlink] FAILED to open %s, terminating.\n", uart_name); return -1; } /* Flush UART */ fflush(stdout); /* topics to advertise */ ardrone_motors_pub = orb_advertise(ORB_ID(ardrone_motors_setpoint), &ardrone_motors); cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd); /* topics to subscribe globally */ /* subscribe to ORB for global position */ global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); orb_set_interval(global_pos_sub, 1000); /* 1Hz active updates */ /* subscribe to ORB for local position */ local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position)); orb_set_interval(local_pos_sub, 1000); /* 1Hz active updates */ pthread_attr_t receiveloop_attr; pthread_attr_init(&receiveloop_attr); pthread_attr_setstacksize(&receiveloop_attr, 2048); pthread_create(&receive_thread, &receiveloop_attr, receiveloop, NULL); pthread_attr_t uorb_attr; pthread_attr_init(&uorb_attr); /* Set stack size, needs more than 2048 bytes */ pthread_attr_setstacksize(&uorb_attr, 4096); pthread_create(&uorb_receive_thread, &uorb_attr, uorb_receiveloop, NULL); /* initialize waypoint manager */ mavlink_wpm_init(wpm); uint16_t counter = 0; int lowspeed_counter = 0; /**< Subscribe to system state and RC channels */ // int status_sub = orb_subscribe(ORB_ID(vehicle_status)); // int rc_sub = orb_subscribe(ORB_ID(rc_channels)); while (1) { if (mavlink_exit_requested) break; /* get local and global position */ orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos); orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos); /* check if waypoint has been reached against the last positions */ mavlink_waypoint_eventloop(mavlink_missionlib_get_system_timestamp(), &global_pos, &local_pos); // sleep usleep(50000); // 1 Hz if (lowspeed_counter == 10) { /* translate the current syste state to mavlink state and mode */ uint8_t mavlink_state = 0; uint8_t mavlink_mode = v_status.mode; get_mavlink_mode_and_state(&v_status, &mavlink_state, &mavlink_mode); /* send heartbeat */ mavlink_msg_heartbeat_send(chan, system_type, MAV_AUTOPILOT_GENERIC, mavlink_mode, v_status.state_machine, mavlink_state); /* send status (values already copied in the section above) */ mavlink_msg_sys_status_send(chan, v_status.onboard_control_sensors_present, v_status.onboard_control_sensors_enabled, v_status.onboard_control_sensors_health, v_status.load, v_status.voltage_battery * 1000.f, v_status.current_battery * 1000.f, v_status.battery_remaining, v_status.drop_rate_comm, v_status.errors_comm, v_status.errors_count1, v_status.errors_count2, v_status.errors_count3, v_status.errors_count4); /* send over MAVLink */ mavlink_msg_rc_channels_raw_send(chan, rc.timestamp / 1000, 0, rc.chan[0].raw, rc.chan[1].raw, rc.chan[2].raw, rc.chan[3].raw, rc.chan[4].raw, rc.chan[5].raw, rc.chan[6].raw, rc.chan[7].raw, rc.rssi); lowspeed_counter = 0; } lowspeed_counter++; /* send parameters at 20 Hz (if queued for sending) */ mavlink_pm_queued_send(); usleep(50000); mavlink_pm_queued_send(); /* send one string at 10 Hz */ mavlink_missionlib_send_gcs_string(mavlink_message_string); mavlink_message_string[0] = '\0'; counter++; } /* wait for threads to complete */ pthread_join(receive_thread, NULL); pthread_join(uorb_receive_thread, NULL); /* Reset the UART flags to original state */ if (!usb_uart) { int termios_state; if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config_original)) < 0) { fprintf(stderr, "[mavlink] ERROR setting baudrate / termios config for %s (tcsetattr)\r\n", uart_name); } printf("[mavlink] Restored original UART config, exiting..\n"); } /* close uart */ close(uart); fflush(stdout); fflush(stderr); return 0; }