/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file multirotor_att_control_main.c * * Implementation of multirotor attitude control main loop. * * @author Lorenz Meier */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "multirotor_attitude_control.h" #include "multirotor_rate_control.h" PARAM_DEFINE_FLOAT(MC_RCLOSS_THROT, 0.0f); // This defines the throttle when the RC signal is lost. __EXPORT int multirotor_att_control_main(int argc, char *argv[]); static bool thread_should_exit; static int mc_task; static bool motor_test_mode = false; static orb_advert_t actuator_pub; static struct vehicle_status_s state; static int mc_thread_main(int argc, char *argv[]) { /* declare and safely initialize all structs */ memset(&state, 0, sizeof(state)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_attitude_setpoint_s att_sp; memset(&att_sp, 0, sizeof(att_sp)); struct manual_control_setpoint_s manual; memset(&manual, 0, sizeof(manual)); struct sensor_combined_s raw; memset(&raw, 0, sizeof(raw)); struct offboard_control_setpoint_s offboard_sp; memset(&offboard_sp, 0, sizeof(offboard_sp)); struct vehicle_rates_setpoint_s rates_sp; memset(&rates_sp, 0, sizeof(rates_sp)); struct actuator_controls_s actuators; /* subscribe to attitude, motor setpoints and system state */ int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int att_setpoint_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); int setpoint_sub = orb_subscribe(ORB_ID(offboard_control_setpoint)); int state_sub = orb_subscribe(ORB_ID(vehicle_status)); int manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); int sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); /* * Do not rate-limit the loop to prevent aliasing * if rate-limiting would be desired later, the line below would * enable it. * * rate-limit the attitude subscription to 200Hz to pace our loop * orb_set_interval(att_sub, 5); */ struct pollfd fds = { .fd = att_sub, .events = POLLIN }; /* publish actuator controls */ for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) { actuators.control[i] = 0.0f; } actuator_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &actuators); orb_advert_t att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp); orb_advert_t rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp); int rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint)); /* register the perf counter */ perf_counter_t mc_loop_perf = perf_alloc(PC_ELAPSED, "multirotor_att_control"); /* welcome user */ printf("[multirotor_att_control] starting\n"); /* store last control mode to detect mode switches */ bool flag_control_manual_enabled = false; bool flag_control_attitude_enabled = false; bool flag_system_armed = false; bool man_yaw_zero_once = false; /* prepare the handle for the failsafe throttle */ param_t failsafe_throttle_handle = param_find("MC_RCLOSS_THROT"); float failsafe_throttle = 0.0f; while (!thread_should_exit) { /* wait for a sensor update, check for exit condition every 500 ms */ poll(&fds, 1, 500); perf_begin(mc_loop_perf); /* get a local copy of system state */ bool updated; orb_check(state_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_status), state_sub, &state); } /* get a local copy of manual setpoint */ orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &manual); /* get a local copy of attitude */ orb_copy(ORB_ID(vehicle_attitude), att_sub, &att); /* get a local copy of attitude setpoint */ orb_copy(ORB_ID(vehicle_attitude_setpoint), att_setpoint_sub, &att_sp); /* get a local copy of rates setpoint */ orb_check(setpoint_sub, &updated); if (updated) { orb_copy(ORB_ID(offboard_control_setpoint), setpoint_sub, &offboard_sp); } /* get a local copy of the current sensor values */ orb_copy(ORB_ID(sensor_combined), sensor_sub, &raw); /** STEP 1: Define which input is the dominating control input */ if (state.flag_control_offboard_enabled) { /* offboard inputs */ if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_RATES) { rates_sp.roll = offboard_sp.p1; rates_sp.pitch = offboard_sp.p2; rates_sp.yaw = offboard_sp.p3; rates_sp.thrust = offboard_sp.p4; // printf("thrust_rate=%8.4f\n",offboard_sp.p4); rates_sp.timestamp = hrt_absolute_time(); orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp); } else if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE) { att_sp.roll_body = offboard_sp.p1; att_sp.pitch_body = offboard_sp.p2; att_sp.yaw_body = offboard_sp.p3; att_sp.thrust = offboard_sp.p4; // printf("thrust_att=%8.4f\n",offboard_sp.p4); att_sp.timestamp = hrt_absolute_time(); /* STEP 2: publish the result to the vehicle actuators */ orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp); } /* decide wether we want rate or position input */ } else if (state.flag_control_manual_enabled) { /* manual inputs, from RC control or joystick */ if (state.flag_control_rates_enabled && !state.flag_control_attitude_enabled) { rates_sp.roll = manual.roll; rates_sp.pitch = manual.pitch; rates_sp.yaw = manual.yaw; rates_sp.thrust = manual.throttle; rates_sp.timestamp = hrt_absolute_time(); } if (state.flag_control_attitude_enabled) { /* initialize to current yaw if switching to manual or att control */ if (state.flag_control_attitude_enabled != flag_control_attitude_enabled || state.flag_control_manual_enabled != flag_control_manual_enabled || state.flag_system_armed != flag_system_armed) { att_sp.yaw_body = att.yaw; } att_sp.roll_body = manual.roll; att_sp.pitch_body = manual.pitch; /* only move setpoint if manual input is != 0 */ // XXX turn into param if ((manual.yaw < -0.01f || 0.01f < manual.yaw) && manual.throttle > 0.3f) { att_sp.yaw_body = att_sp.yaw_body + manual.yaw * 0.0025f; } else if (manual.throttle <= 0.3f) { att_sp.yaw_body = att.yaw; } att_sp.thrust = manual.throttle; /* if the RC signal is lost, try to stay level and go slowly back down to ground */ if(state.rc_signal_lost) { /* the failsafe throttle is stored as a parameter, as it depends on the copter and the payload */ param_get(failsafe_throttle_handle, &failsafe_throttle); att_sp.roll_body = 0.0f; att_sp.pitch_body = 0.0f; att_sp.yaw_body = 0.0f; att_sp.thrust = failsafe_throttle; } att_sp.timestamp = hrt_absolute_time(); } /* STEP 2: publish the result to the vehicle actuators */ orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp); if (motor_test_mode) { printf("testmode"); att_sp.roll_body = 0.0f; att_sp.pitch_body = 0.0f; att_sp.yaw_body = 0.0f; att_sp.thrust = 0.1f; att_sp.timestamp = hrt_absolute_time(); /* STEP 2: publish the result to the vehicle actuators */ orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp); } } /** STEP 3: Identify the controller setup to run and set up the inputs correctly */ if (state.flag_control_attitude_enabled) { multirotor_control_attitude(&att_sp, &att, &rates_sp, NULL); orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp); } if (state.flag_control_rates_enabled) { float gyro[3]; /* get current rate setpoint */ bool rates_sp_valid = false; orb_check(rates_sp_sub, &rates_sp_valid); if (rates_sp_valid) { orb_copy(ORB_ID(vehicle_rates_setpoint), rates_sp_sub, &rates_sp); } /* apply controller */ gyro[0] = att.rollspeed; gyro[1] = att.pitchspeed; gyro[2] = att.yawspeed; multirotor_control_rates(&rates_sp, gyro, &actuators); orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators); } /* update state */ flag_control_attitude_enabled = state.flag_control_attitude_enabled; flag_control_manual_enabled = state.flag_control_manual_enabled; flag_system_armed = state.flag_system_armed; perf_end(mc_loop_perf); } printf("[multirotor att control] stopping, disarming motors.\n"); /* kill all outputs */ for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) actuators.control[i] = 0.0f; orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators); close(att_sub); close(state_sub); close(manual_sub); close(actuator_pub); close(att_sp_pub); perf_print_counter(mc_loop_perf); perf_free(mc_loop_perf); fflush(stdout); exit(0); } static void usage(const char *reason) { if (reason) fprintf(stderr, "%s\n", reason); fprintf(stderr, "usage: multirotor_att_control [-m ] [-t] {start|status|stop}\n"); fprintf(stderr, " is 'rates' or 'attitude'\n"); fprintf(stderr, " -t enables motor test mode with 10%% thrust\n"); exit(1); } int multirotor_att_control_main(int argc, char *argv[]) { int ch; unsigned int optioncount = 0; while ((ch = getopt(argc, argv, "tm:")) != EOF) { switch (ch) { case 't': motor_test_mode = true; optioncount += 1; break; case ':': usage("missing parameter"); break; default: fprintf(stderr, "option: -%c\n", ch); usage("unrecognized option"); break; } } argc -= optioncount; //argv += optioncount; if (argc < 1) usage("missing command"); if (!strcmp(argv[1+optioncount], "start")) { thread_should_exit = false; mc_task = task_spawn("multirotor_att_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 15, 2048, mc_thread_main, NULL); exit(0); } if (!strcmp(argv[1+optioncount], "stop")) { thread_should_exit = true; exit(0); } usage("unrecognized command"); exit(1); }