/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: @author Tobias Naegeli * @author Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file multirotor_rate_control.c * Implementation of rate controller */ #include "multirotor_rate_control.h" #include #include #include #include #include #include #include #include #include #include // PARAM_DEFINE_FLOAT(MC_YAWRATE_P, 0.08f); /* same on Flamewheel */ // PARAM_DEFINE_FLOAT(MC_YAWRATE_I, 0.02f); // PARAM_DEFINE_FLOAT(MC_YAWRATE_AWU, 0.02f); // PARAM_DEFINE_FLOAT(MC_YAWRATE_LIM, 0.1f); PARAM_DEFINE_FLOAT(MC_ATTRATE_P, 0.2f); /* 0.15 F405 Flamewheel */ PARAM_DEFINE_FLOAT(MC_ATTRATE_I, 0.0f); PARAM_DEFINE_FLOAT(MC_ATTRATE_AWU, 0.05f); PARAM_DEFINE_FLOAT(MC_ATTRATE_LIM, 8.0f); /**< roughly < 500 deg/s limit */ struct mc_rate_control_params { float yawrate_p; float yawrate_i; float yawrate_awu; float yawrate_lim; float attrate_p; float attrate_i; float attrate_awu; float attrate_lim; float rate_lim; }; struct mc_rate_control_param_handles { param_t yawrate_p; param_t yawrate_i; param_t yawrate_awu; param_t yawrate_lim; param_t attrate_p; param_t attrate_i; param_t attrate_awu; param_t attrate_lim; }; /** * Initialize all parameter handles and values * */ static int parameters_init(struct mc_rate_control_param_handles *h); /** * Update all parameters * */ static int parameters_update(const struct mc_rate_control_param_handles *h, struct mc_rate_control_params *p); static int parameters_init(struct mc_rate_control_param_handles *h) { /* PID parameters */ h->yawrate_p = param_find("MC_YAWRATE_P"); h->yawrate_i = param_find("MC_YAWRATE_I"); h->yawrate_awu = param_find("MC_YAWRATE_AWU"); h->yawrate_lim = param_find("MC_YAWRATE_LIM"); h->attrate_p = param_find("MC_ATTRATE_P"); h->attrate_i = param_find("MC_ATTRATE_I"); h->attrate_awu = param_find("MC_ATTRATE_AWU"); h->attrate_lim = param_find("MC_ATTRATE_LIM"); return OK; } static int parameters_update(const struct mc_rate_control_param_handles *h, struct mc_rate_control_params *p) { param_get(h->yawrate_p, &(p->yawrate_p)); param_get(h->yawrate_i, &(p->yawrate_i)); param_get(h->yawrate_awu, &(p->yawrate_awu)); param_get(h->yawrate_lim, &(p->yawrate_lim)); param_get(h->attrate_p, &(p->attrate_p)); param_get(h->attrate_i, &(p->attrate_i)); param_get(h->attrate_awu, &(p->attrate_awu)); param_get(h->attrate_lim, &(p->attrate_lim)); return OK; } void multirotor_control_rates(const struct vehicle_rates_setpoint_s *rate_sp, const float rates[], struct actuator_controls_s *actuators) { static uint64_t last_run = 0; const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); static int motor_skip_counter = 0; // static PID_t yaw_pos_controller; static PID_t yaw_speed_controller; static PID_t pitch_controller; static PID_t roll_controller; static struct mc_rate_control_params p; static struct mc_rate_control_param_handles h; static bool initialized = false; /* initialize the pid controllers when the function is called for the first time */ if (initialized == false) { parameters_init(&h); parameters_update(&h, &p); pid_init(&yaw_speed_controller, p.yawrate_p, 0, p.yawrate_i, p.yawrate_awu, PID_MODE_DERIVATIV_SET); pid_init(&pitch_controller, p.attrate_p, p.attrate_i, 0, p.attrate_awu, PID_MODE_DERIVATIV_SET); pid_init(&roll_controller, p.attrate_p, p.attrate_i, 0, p.attrate_awu, PID_MODE_DERIVATIV_SET); initialized = true; } /* load new parameters with lower rate */ if (motor_skip_counter % 250 == 0) { /* update parameters from storage */ parameters_update(&h, &p); /* apply parameters */ pid_set_parameters(&yaw_speed_controller, p.yawrate_p, p.yawrate_i, 0, p.yawrate_awu); pid_set_parameters(&pitch_controller, p.attrate_p, p.attrate_i, 0, p.attrate_awu); pid_set_parameters(&roll_controller, p.attrate_p, p.attrate_i, 0, p.attrate_awu); } /* calculate current control outputs */ /* control pitch (forward) output */ float pitch_control = pid_calculate(&pitch_controller, rate_sp->pitch, rates[1], 0.0f, deltaT); /* control roll (left/right) output */ float roll_control = pid_calculate(&roll_controller, rate_sp->roll, rates[0], 0.0f, deltaT); /* control yaw rate */ float yaw_rate_control = pid_calculate(&yaw_speed_controller, rate_sp->yaw, rates[2], 0.0f, deltaT); /* * compensate the vertical loss of thrust * when thrust plane has an angle. * start with a factor of 1.0 (no change) */ float zcompensation = 1.0f; // if (fabsf(att->roll) > 0.3f) { // zcompensation *= 1.04675160154f; // } else { // zcompensation *= 1.0f / cosf(att->roll); // } // if (fabsf(att->pitch) > 0.3f) { // zcompensation *= 1.04675160154f; // } else { // zcompensation *= 1.0f / cosf(att->pitch); // } float motor_thrust = 0.0f; motor_thrust = rate_sp->thrust; /* compensate thrust vector for roll / pitch contributions */ motor_thrust *= zcompensation; /* limit yaw rate output */ if (yaw_rate_control > p.yawrate_lim) { yaw_rate_control = p.yawrate_lim; yaw_speed_controller.saturated = 1; } if (yaw_rate_control < -p.yawrate_lim) { yaw_rate_control = -p.yawrate_lim; yaw_speed_controller.saturated = 1; } if (pitch_control > p.attrate_lim) { pitch_control = p.attrate_lim; pitch_controller.saturated = 1; } if (pitch_control < -p.attrate_lim) { pitch_control = -p.attrate_lim; pitch_controller.saturated = 1; } if (roll_control > p.attrate_lim) { roll_control = p.attrate_lim; roll_controller.saturated = 1; } if (roll_control < -p.attrate_lim) { roll_control = -p.attrate_lim; roll_controller.saturated = 1; } actuators->control[0] = roll_control; actuators->control[1] = pitch_control; actuators->control[2] = yaw_rate_control; actuators->control[3] = motor_thrust; motor_skip_counter++; }