/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file Control channel input/output mixer and failsafe. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "px4io.h" /* * Count of periodic calls in which we have no data. */ static unsigned mixer_input_drops; #define MIXER_INPUT_DROP_LIMIT 10 /* * Count of periodic calls in which we have no FMU input. */ static unsigned fmu_input_drops; #define FMU_INPUT_DROP_LIMIT 20 /* * Serial port fd for serial RX protocols */ static int rx_port = -1; /* * HRT periodic call used to check for control input data. */ static struct hrt_call mixer_input_call; /* * Mixer periodic tick. */ static void mixer_tick(void *arg); /* * Collect RC input data from the controller source(s). */ static void mixer_get_rc_input(void); /* * Update a mixer based on the current control signals. */ static void mixer_update(int mixer, uint16_t *inputs, int input_count); /* current servo arm/disarm state */ bool mixer_servos_armed; /* * Each mixer consumes a set of inputs and produces a single output. */ struct mixer { uint16_t current_value; /* XXX more config here */ } mixers[IO_SERVO_COUNT]; int mixer_init(void) { /* open the serial port */ rx_port = open("/dev/ttyS0", O_RDONLY | O_NONBLOCK); /* look for control data at 50Hz */ hrt_call_every(&mixer_input_call, 1000, 20000, mixer_tick, NULL); return 0; } void mixer_set_serial_mode(uint8_t serial_mode) { if (serial_mode == system_state.serial_rx_mode) return; struct termios t; tcgetattr(rx_port, &t); switch (serial_mode) { case RX_MODE_PPM_ONLY: break; case RX_MODE_SPEKTRUM_6: case RX_MODE_SPEKTRUM_7: /* 115200, no parity, one stop bit */ cfsetspeed(&t, 115200); t.c_cflag &= ~(CSTOPB | PARENB); break; case RX_MODE_FUTABA_SBUS: /* 100000, even parity, two stop bits */ cfsetspeed(&t, 100000); t.c_cflag |= (CSTOPB | PARENB); break; default: return; } tcsetattr(rx_port, TCSANOW, &t); system_state.serial_rx_mode = serial_mode; } static void mixer_tick(void *arg) { uint16_t *control_values; int control_count; int i; bool should_arm; /* * Start by looking for R/C control inputs. * This updates system_state with any control inputs received. */ mixer_get_rc_input(); /* * Decide which set of inputs we're using. */ if (system_state.mixer_use_fmu) { /* we have recent control data from the FMU */ control_count = PX4IO_OUTPUT_CHANNELS; control_values = &system_state.fmu_channel_data[0]; /* check that we are receiving fresh data from the FMU */ if (!system_state.fmu_data_received) { fmu_input_drops++; /* too many frames without FMU input, time to go to failsafe */ if (fmu_input_drops >= FMU_INPUT_DROP_LIMIT) { system_state.mixer_use_fmu = false; } } else { fmu_input_drops = 0; system_state.fmu_data_received = false; } } else if (system_state.rc_channels > 0) { /* we have control data from an R/C input */ control_count = system_state.rc_channels; control_values = &system_state.rc_channel_data[0]; } else { /* we have no control input */ control_count = 0; } /* * Tickle each mixer, if we have control data. */ if (control_count > 0) { for (i = 0; i < PX4IO_OUTPUT_CHANNELS; i++) { mixer_update(i, control_values, control_count); /* * If we are armed, update the servo output. */ if (system_state.armed) up_pwm_servo_set(i, mixers[i].current_value); } } /* * Decide whether the servos should be armed right now. */ should_arm = system_state.armed && (control_count > 0); if (should_arm && !mixer_servos_armed) { /* need to arm, but not armed */ up_pwm_servo_arm(true); mixer_servos_armed = true; } else if (!should_arm && mixer_servos_armed) { /* armed but need to disarm */ up_pwm_servo_arm(false); mixer_servos_armed = false; } } static void mixer_update(int mixer, uint16_t *inputs, int input_count) { /* simple passthrough for now */ if (mixer < input_count) { mixers[mixer].current_value = inputs[mixer]; } else { mixers[mixer].current_value = 0; } } static bool mixer_get_spektrum_input(void) { static uint8_t buf[16]; static unsigned count; /* always read as much data as we can into the buffer */ if (count >= sizeof(buf)) count = 0; ssize_t result = read(rx_port, buf, sizeof(buf) - count); /* no data or an error */ if (result <= 0) return false; count += result; /* if there are more than two bytes in the buffer, check for sync */ if (count >= 2) { if ((buf[0] != 0x3) || (buf[1] != 0x1)) { /* not in sync; look for a possible sync marker */ for (unsigned i = 1; i < count; i++) { if (buf[i] == 0x3) { /* could be a frame marker; move buffer bytes */ count -= i; memmove(buf, buf + i, count); break; } } } } if (count < sizeof(buf)) return false; /* we got a frame; decode it */ const uint16_t *channels = (const uint16_t *)&buf[2]; /* * Channel assignment for DX6i vs. DX7 is different. * * DX7 etc. is: * * 0: Aileron * 1: Flaps * 2: Gear * 3: Elevator * 4: Aux2 * 5: Throttle * 6: Rudder * * DX6i is: * * 0: Aileron * 1: Flaps * 2: Elevator * 3: Rudder * 4: Throttle * 5: Gear * 6: * * We convert these to our standard Futaba-style assignment: * * 0: Throttle (Throttle) * 1: Roll (Aileron) * 2: Pitch (Elevator) * 3: Yaw (Rudder) * 4: Override (Flaps) * 5: FUNC_0 (Gear) * 6: FUNC_1 (Aux2) */ if (system_state.serial_rx_mode == RX_MODE_SPEKTRUM_7) { system_state.rc_channel_data[0] = channels[5]; /* Throttle */ system_state.rc_channel_data[1] = channels[0]; /* Roll */ system_state.rc_channel_data[2] = channels[3]; /* Pitch */ system_state.rc_channel_data[3] = channels[6]; /* Yaw */ system_state.rc_channel_data[4] = channels[1]; /* Override */ system_state.rc_channel_data[5] = channels[2]; /* FUNC_0 */ system_state.rc_channel_data[6] = channels[4]; /* FUNC_1 */ system_state.rc_channels = 7; } else { system_state.rc_channel_data[0] = channels[4]; /* Throttle */ system_state.rc_channel_data[1] = channels[0]; /* Roll */ system_state.rc_channel_data[2] = channels[2]; /* Pitch */ system_state.rc_channel_data[3] = channels[3]; /* Yaw */ system_state.rc_channel_data[4] = channels[1]; /* Override */ system_state.rc_channel_data[5] = channels[5]; /* FUNC_0 */ system_state.rc_channels = 6; } count = 0; return true; } static bool mixer_get_sbus_input(void) { /* XXX not implemented yet */ return false; } static void mixer_get_rc_input(void) { bool got_input = false; switch (system_state.serial_rx_mode) { case RX_MODE_PPM_ONLY: if (ppm_decoded_channels > 0) { /* copy channel data */ system_state.rc_channels = ppm_decoded_channels; for (unsigned i = 0; i < ppm_decoded_channels; i++) system_state.rc_channel_data[i] = ppm_buffer[i]; got_input = true; } break; case RX_MODE_SPEKTRUM_6: case RX_MODE_SPEKTRUM_7: got_input = mixer_get_spektrum_input(); break; case RX_MODE_FUTABA_SBUS: got_input = mixer_get_sbus_input(); break; default: break; } if (got_input) { mixer_input_drops = 0; system_state.fmu_report_due = true; } else { /* * No data; count the 'frame drops' and once we hit the limit * assume that we have lost input. */ if (mixer_input_drops < MIXER_INPUT_DROP_LIMIT) { mixer_input_drops++; /* if we hit the limit, stop pretending we have input and let the FMU know */ if (mixer_input_drops == MIXER_INPUT_DROP_LIMIT) { system_state.rc_channels = 0; system_state.fmu_report_due = true; } } } }