/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ardrone_motor_control.c * Implementation of AR.Drone 1.0 / 2.0 motor control interface */ #include #include #include #include #include #include #include #include #include #include #include "ardrone_motor_control.h" static unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2; static unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 }; typedef union { uint16_t motor_value; uint8_t bytes[2]; } motor_union_t; #define UART_TRANSFER_TIME_BYTE_US (9+50) /**< 9 us per byte at 115200k plus overhead */ /** * @brief Generate the 8-byte motor set packet * * @return the number of bytes (8) */ void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) { motor_buf[0] = 0x20; motor_buf[1] = 0x00; motor_buf[2] = 0x00; motor_buf[3] = 0x00; motor_buf[4] = 0x00; /* * {0x20, 0x00, 0x00, 0x00, 0x00}; * 0x20 is start sign / motor command */ motor_union_t curr_motor; uint16_t nineBitMask = 0x1FF; /* Set motor 1 */ curr_motor.motor_value = (motor1 & nineBitMask) << 4; motor_buf[0] |= curr_motor.bytes[1]; motor_buf[1] |= curr_motor.bytes[0]; /* Set motor 2 */ curr_motor.motor_value = (motor2 & nineBitMask) << 3; motor_buf[1] |= curr_motor.bytes[1]; motor_buf[2] |= curr_motor.bytes[0]; /* Set motor 3 */ curr_motor.motor_value = (motor3 & nineBitMask) << 2; motor_buf[2] |= curr_motor.bytes[1]; motor_buf[3] |= curr_motor.bytes[0]; /* Set motor 4 */ curr_motor.motor_value = (motor4 & nineBitMask) << 1; motor_buf[3] |= curr_motor.bytes[1]; motor_buf[4] |= curr_motor.bytes[0]; } void ar_enable_broadcast(int fd) { ar_select_motor(fd, 0); } int ar_multiplexing_init() { int fd; fd = open(PX4FMU_DEVICE_PATH, 0); if (fd < 0) { warn("GPIO: open fail"); return fd; } /* deactivate all outputs */ if (ioctl(fd, GPIO_SET, motor_gpios)) { warn("GPIO: clearing pins fail"); close(fd); return -1; } /* configure all motor select GPIOs as outputs */ if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) { warn("GPIO: output set fail"); close(fd); return -1; } return fd; } int ar_multiplexing_deinit(int fd) { if (fd < 0) { printf("GPIO: no valid descriptor\n"); return fd; } int ret = 0; /* deselect motor 1-4 */ ret += ioctl(fd, GPIO_SET, motor_gpios); if (ret != 0) { printf("GPIO: clear failed %d times\n", ret); } if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) { printf("GPIO: input set fail\n"); return -1; } close(fd); return ret; } int ar_select_motor(int fd, uint8_t motor) { int ret = 0; /* * Four GPIOS: * GPIO_EXT1 * GPIO_EXT2 * GPIO_UART2_CTS * GPIO_UART2_RTS */ /* select motor 0 to enable broadcast */ if (motor == 0) { /* select motor 1-4 */ ret += ioctl(fd, GPIO_CLEAR, motor_gpios); } else { /* select reqested motor */ ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]); } return ret; } int ar_deselect_motor(int fd, uint8_t motor) { int ret = 0; /* * Four GPIOS: * GPIO_EXT1 * GPIO_EXT2 * GPIO_UART2_CTS * GPIO_UART2_RTS */ if (motor == 0) { /* deselect motor 1-4 */ ret += ioctl(fd, GPIO_SET, motor_gpios); } else { /* deselect reqested motor */ ret = ioctl(fd, GPIO_SET, motor_gpio[motor - 1]); } return ret; } int ar_init_motors(int ardrone_uart, int gpios) { /* Write ARDrone commands on UART2 */ uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40}; uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0}; /* deselect all motors */ ar_deselect_motor(gpios, 0); /* initialize all motors * - select one motor at a time * - configure motor */ int i; int errcounter = 0; /* initial setup run */ for (i = 1; i < 5; ++i) { /* Initialize motors 1-4 */ errcounter += ar_select_motor(gpios, i); usleep(200); /* * write 0xE0 - request status * receive one status byte */ write(ardrone_uart, &(initbuf[0]), 1); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US*1); /* * write 0x91 - request checksum * receive 120 status bytes */ write(ardrone_uart, &(initbuf[1]), 1); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US*120); /* * write 0xA1 - set status OK * receive one status byte - should be A0 * to confirm status is OK */ write(ardrone_uart, &(initbuf[2]), 1); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US*1); /* * set as motor i, where i = 1..4 * receive nothing */ initbuf[3] = (uint8_t)i; write(ardrone_uart, &(initbuf[3]), 1); fsync(ardrone_uart); /* * write 0x40 - check version * receive 11 bytes encoding the version */ write(ardrone_uart, &(initbuf[4]), 1); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US*11); ar_deselect_motor(gpios, i); /* sleep 200 ms */ usleep(200000); } /* start the multicast part */ errcounter += ar_select_motor(gpios, 0); usleep(200); /* * first round * write six times A0 - enable broadcast * receive nothing */ write(ardrone_uart, multicastbuf, sizeof(multicastbuf)); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf)); /* * second round * write six times A0 - enable broadcast * receive nothing */ write(ardrone_uart, multicastbuf, sizeof(multicastbuf)); fsync(ardrone_uart); usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf)); /* set motors to zero speed (fsync is part of the write command */ ardrone_write_motor_commands(ardrone_uart, 0, 0, 0, 0); if (errcounter != 0) { warnx("Failed %d times", -errcounter); fflush(stdout); } return errcounter; } /** * Sets the leds on the motor controllers, 1 turns led on, 0 off. */ void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green, uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green) { /* * 2 bytes are sent. The first 3 bits describe the command: 011 means led control * the following 4 bits are the red leds for motor 4, 3, 2, 1 * then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1 * the last bit is unknown. * * The packet is therefore: * 011 rrrr 0000 gggg 0 */ uint8_t leds[2]; leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((led1_red & 0x01) << 1); leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((led1_green & 0x01) << 1); write(ardrone_uart, leds, 2); } int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) { const unsigned int min_motor_interval = 4900; static uint64_t last_motor_time = 0; static struct actuator_outputs_s outputs; outputs.timestamp = hrt_absolute_time(); outputs.output[0] = motor1; outputs.output[1] = motor2; outputs.output[2] = motor3; outputs.output[3] = motor4; static orb_advert_t pub = 0; if (pub == 0) { /* advertise to channel 0 / primary */ pub = orb_advertise(ORB_ID(actuator_outputs), &outputs); } if (hrt_absolute_time() - last_motor_time > min_motor_interval) { uint8_t buf[5] = {0}; ar_get_motor_packet(buf, motor1, motor2, motor3, motor4); int ret; ret = write(ardrone_fd, buf, sizeof(buf)); fsync(ardrone_fd); /* publish just written values */ orb_publish(ORB_ID(actuator_outputs), pub, &outputs); if (ret == sizeof(buf)) { return OK; } else { return ret; } } else { return -ERROR; } } void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators) { float roll_control = actuators->control[0]; float pitch_control = actuators->control[1]; float yaw_control = actuators->control[2]; float motor_thrust = actuators->control[3]; const float min_thrust = 0.02f; /**< 2% minimum thrust */ const float max_thrust = 1.0f; /**< 100% max thrust */ const float scaling = 510.0f; /**< 100% thrust equals a value of 510 which works, 512 leads to cutoff */ const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */ const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */ /* initialize all fields to zero */ uint16_t motor_pwm[4] = {0}; float motor_calc[4] = {0}; float output_band = 0.0f; const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */ /* linearly scale the control inputs from 0 to startpoint_full_control */ if (motor_thrust < startpoint_full_control) { output_band = motor_thrust/startpoint_full_control; // linear from 0 to 1 } else { output_band = 1.0f; } roll_control *= output_band; pitch_control *= output_band; yaw_control *= output_band; //add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer // FRONT (MOTOR 1) motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control); // RIGHT (MOTOR 2) motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control); // BACK (MOTOR 3) motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control); // LEFT (MOTOR 4) motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control); /* if one motor is saturated, reduce throttle */ float saturation = fmaxf(fmaxf(motor_calc[0], motor_calc[1]),fmaxf(motor_calc[2], motor_calc[3])) - max_thrust; if (saturation > 0.0f) { /* reduce the motor thrust according to the saturation */ motor_thrust = motor_thrust - saturation; // FRONT (MOTOR 1) motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control); // RIGHT (MOTOR 2) motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control); // BACK (MOTOR 3) motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control); // LEFT (MOTOR 4) motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control); } /* set the motor values */ /* scale up from 0..1 to 10..500) */ motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas); motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas); motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas); motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas); /* scale up from 0..1 to 10..500) */ motor_pwm[0] = (uint16_t) (motor_calc[0] * (float)((max_gas - min_gas) + min_gas)); motor_pwm[1] = (uint16_t) (motor_calc[1] * (float)((max_gas - min_gas) + min_gas)); motor_pwm[2] = (uint16_t) (motor_calc[2] * (float)((max_gas - min_gas) + min_gas)); motor_pwm[3] = (uint16_t) (motor_calc[3] * (float)((max_gas - min_gas) + min_gas)); /* Failsafe logic for min values - should never be necessary */ motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : min_gas; motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : min_gas; motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : min_gas; motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : min_gas; /* Failsafe logic for max values - should never be necessary */ motor_pwm[0] = (motor_pwm[0] <= max_gas) ? motor_pwm[0] : max_gas; motor_pwm[1] = (motor_pwm[1] <= max_gas) ? motor_pwm[1] : max_gas; motor_pwm[2] = (motor_pwm[2] <= max_gas) ? motor_pwm[2] : max_gas; motor_pwm[3] = (motor_pwm[3] <= max_gas) ? motor_pwm[3] : max_gas; /* send motors via UART */ ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); }