/**************************************************************************** * * Copyright (c) 2012-2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file px4fmu2_init.c * * PX4FMUv2-specific early startup code. This file implements the * nsh_archinitialize() function that is called early by nsh during startup. * * Code here is run before the rcS script is invoked; it should start required * subsystems and perform board-specific initialization. */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board_config.h" #include #include #include #include #include #include #include #include #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) #include #endif /* todo: This is constant but not proper */ __BEGIN_DECLS extern void led_off(int led); __END_DECLS /**************************************************************************** * Pre-Processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /**************************************************************************** * Protected Functions ****************************************************************************/ #if defined(CONFIG_FAT_DMAMEMORY) # if !defined(CONFIG_GRAN) || !defined(CONFIG_FAT_DMAMEMORY) # error microSD DMA support requires CONFIG_GRAN # endif #ifdef CONFIG_FAT_DMAMEMORY static GRAN_HANDLE dma_allocator; /* * The DMA heap size constrains the total number of things that can be * ready to do DMA at a time. * * For example, FAT DMA depends on one sector-sized buffer per filesystem plus * one sector-sized buffer per file. * * We use a fundamental alignment / granule size of 64B; this is sufficient * to guarantee alignment for the largest STM32 DMA burst (16 beats x 32bits). */ static uint8_t g_dma_heap[8192] __attribute__((aligned(64))); static perf_counter_t g_dma_perf; #endif static void dma_alloc_init(void) { dma_allocator = gran_initialize(g_dma_heap, sizeof(g_dma_heap), 7, /* 128B granule - must be > alignment (XXX bug?) */ 6); /* 64B alignment */ if (dma_allocator == NULL) { syslog(LOG_ERR, "[boot] DMA allocator setup FAILED"); } else { g_dma_perf = perf_alloc(PC_COUNT, "DMA allocations"); } } /**************************************************************************** * Public Functions ****************************************************************************/ /* * DMA-aware allocator stubs for the FAT filesystem. */ __EXPORT void *fat_dma_alloc(size_t size); __EXPORT void fat_dma_free(FAR void *memory, size_t size); void * fat_dma_alloc(size_t size) { perf_count(g_dma_perf); return gran_alloc(dma_allocator, size); } void fat_dma_free(FAR void *memory, size_t size) { gran_free(dma_allocator, memory, size); } #else # define dma_alloc_init() #endif /************************************************************************************ * Name: stm32_boardinitialize * * Description: * All STM32 architectures must provide the following entry point. This entry point * is called early in the intitialization -- after all memory has been configured * and mapped but before any devices have been initialized. * ************************************************************************************/ __EXPORT void stm32_boardinitialize(void) { /* configure SPI interfaces */ stm32_spiinitialize(); /* configure LEDs */ board_led_initialize(); } /**************************************************************************** * Name: nsh_archinitialize * * Description: * Perform architecture specific initialization * ****************************************************************************/ static struct spi_dev_s *spi1; static struct spi_dev_s *spi2; static struct spi_dev_s *spi4; static struct sdio_dev_s *sdio; #include #ifdef __cplusplus __EXPORT int matherr(struct __exception *e) { return 1; } #else __EXPORT int matherr(struct exception *e) { return 1; } #endif __EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES+1] = BSRAM_FILE_SIZES; int nfc = stm32_bbsraminitialize(BBSRAM_PATH, filesizes); syslog(LOG_INFO, "[boot] %d Battery Backed Up File(s) \n",nfc); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { syslog(LOG_INFO, "[boot] There was a hard fault hit the SPACE BAR to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot",false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0 ) { /* Since we can not commit the fault dump to disk. display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); syslog(LOG_INFO, "[boot] There were %d uncommitted Hard faults System halted%s\n", reboots, (bytesWaiting==0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; for (int c ='>'; !dbgContinue; c= getchar()) { switch(c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch(c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot",true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch syslog(LOG_INFO, "\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 1\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); syslog(LOG_INFO, "[boot] Initialized SPI port 1 (SENSORS)\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 2\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); syslog(LOG_INFO, "[boot] Initialized SPI port 2 (RAMTRON FRAM)\n"); spi4 = up_spiinitialize(4); /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); SPI_SELECT(spi4, PX4_SPIDEV_EXT0, false); SPI_SELECT(spi4, PX4_SPIDEV_EXT1, false); syslog(LOG_INFO, "[boot] Initialized SPI port 4\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); syslog(LOG_INFO, "[boot] Initialized SDIO\n"); #endif return OK; } __EXPORT void board_crashdump(uint32_t currentsp, void *tcb, uint8_t *filename, int lineno) { /* We need a chunk of ram to save the complete contest in. * Since we are going to reboot we will use &_sdata * */ fullcontext_s *pdump = (fullcontext_s*)&_sdata; (void)irqsave(); struct tcb_s *rtcb = (struct tcb_s *)tcb; /* Zero out everything */ memset(pdump,0,sizeof(fullcontext_s)); /* Save Info */ pdump->info.lineno = lineno; if (filename) { int offset = 0; unsigned int len = strlen((char*)filename) + 1; if (len > sizeof(pdump->info.filename)) { offset = len - sizeof(pdump->info.filename) ; } strncpy(pdump->info.filename, (char*)&filename[offset], sizeof(pdump->info.filename)); } /* Save the value of the pointer for current_regs as debugging info. * It should be NULL in case of an ASSERT and will aid in cross * checking the validity of system memory at the time of the * fault. */ pdump->info.current_regs = (uintptr_t) current_regs; /* Save Context */ /* If not NULL then we are in an interrupt context and the user context * is in current_regs else we are running in the users context */ #if CONFIG_TASK_NAME_SIZE > 0 strncpy(pdump->context.proc.name, rtcb->name, CONFIG_TASK_NAME_SIZE); #endif pdump->context.proc.pid = rtcb->pid; pdump->context.stack.current_sp = currentsp; if (current_regs) { pdump->info.stuff |= eRegs; memcpy(&pdump->context.proc.xcp.regs, (void*)current_regs, sizeof(pdump->context.proc.xcp.regs)); currentsp = pdump->context.proc.xcp.regs[REG_R13]; } pdump->context.stack.itopofstack = (uint32_t) &g_intstackbase;; pdump->context.stack.istacksize = (CONFIG_ARCH_INTERRUPTSTACK & ~3); if (pdump->context.proc.pid == 0) { pdump->context.stack.utopofstack = g_idle_topstack - 4; pdump->context.stack.ustacksize = CONFIG_IDLETHREAD_STACKSIZE; } else { pdump->context.stack.utopofstack = (uint32_t) rtcb->adj_stack_ptr; pdump->context.stack.ustacksize = (uint32_t) rtcb->adj_stack_size;; } #if CONFIG_ARCH_INTERRUPTSTACK > 3 /* Get the limits on the interrupt stack memory */ pdump->context.stack.itopofstack = (uint32_t)&g_intstackbase; pdump->context.stack.istacksize = (CONFIG_ARCH_INTERRUPTSTACK & ~3); /* If the current stack pointer is within the interrupt stack then * save the interrupt stack data centered about the interrupt stack pointer */ if (pdump->context.stack.current_sp <= pdump->context.stack.itopofstack && pdump->context.stack.current_sp > pdump->context.stack.itopofstack - pdump->context.stack.istacksize) { pdump->info.stuff |= eIntStack; memcpy(&pdump->istack, (void *)(pdump->context.stack.current_sp-sizeof(pdump->istack)/2), sizeof(pdump->istack)); } #endif /* If the saved context of the interrupted process's stack pointer lies within the * allocated user stack memory then save the user stack centered about the user sp */ if (currentsp <= pdump->context.stack.utopofstack && currentsp > pdump->context.stack.utopofstack - pdump->context.stack.ustacksize) { pdump->info.stuff |= eUserStack; memcpy(&pdump->ustack, (void *)(currentsp-sizeof(pdump->ustack)/2), sizeof(pdump->ustack)); } /* Oh boy we have a real hot mess on our hands so save above and below the * current sp */ if ((pdump->info.stuff & eStackValid) == 0) { pdump->info.stuff |= eStackUnknown; #if CONFIG_ARCH_INTERRUPTSTACK > 3 /* sp and above in istack */ memcpy(&pdump->istack, (void *)pdump->context.stack.current_sp, sizeof(pdump->istack)); /* below in ustack */ memcpy(&pdump->ustack, (void *)(pdump->context.stack.current_sp-sizeof(pdump->ustack)), sizeof(pdump->ustack)); #else /* save above and below in ustack */ memcpy(&pdump->ustack, (void *)(pdump->context.stack.current_sp-sizeof(pdump->ustack)/2), sizeof(pdump->ustack)/2); #endif } stm32_bbsram_savepanic(HARDFAULT_FILENO, (uint8_t*)pdump, sizeof(fullcontext_s)); #if defined(CONFIG_BOARD_RESET_ON_CRASH) systemreset(false); #endif }