/**************************************************************************** * * Copyright (c) 2014, 2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ll40ls.cpp * @author Allyson Kreft * * Driver for the PulsedLight Lidar-Lite range finders connected via I2C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Configuration Constants */ #define LL40LS_BUS PX4_I2C_BUS_EXPANSION #define LL40LS_BASEADDR 0x62 /* 7-bit address */ #define LL40LS_BASEADDR_OLD 0x42 /* previous 7-bit address */ #define LL40LS_DEVICE_PATH_INT "/dev/ll40ls_int" #define LL40LS_DEVICE_PATH_EXT "/dev/ll40ls_ext" /* LL40LS Registers addresses */ #define LL40LS_MEASURE_REG 0x00 /* Measure range register */ #define LL40LS_MSRREG_RESET 0x00 /* reset to power on defaults */ #define LL40LS_MSRREG_ACQUIRE 0x04 /* Value to initiate a measurement, varies based on sensor revision */ #define LL40LS_MAX_ACQ_COUNT_REG 0x02 /* maximum acquisition count register */ #define LL40LS_DISTHIGH_REG 0x8F /* High byte of distance register, auto increment */ #define LL40LS_WHO_AM_I_REG 0x11 #define LL40LS_WHO_AM_I_REG_VAL 0xCA #define LL40LS_SIGNAL_STRENGTH_REG 0x5b /* Device limits */ #define LL40LS_MIN_DISTANCE (0.00f) #define LL40LS_MAX_DISTANCE (60.00f) // normal conversion wait time #define LL40LS_CONVERSION_INTERVAL 50*1000UL /* 50ms */ // maximum time to wait for a conversion to complete. #define LL40LS_CONVERSION_TIMEOUT 100*1000UL /* 100ms */ /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; #ifndef CONFIG_SCHED_WORKQUEUE # error This requires CONFIG_SCHED_WORKQUEUE. #endif class LL40LS : public device::I2C { public: LL40LS(int bus, const char *path, int address = LL40LS_BASEADDR); virtual ~LL40LS(); virtual int init(); virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); virtual int ioctl(struct file *filp, int cmd, unsigned long arg); /** * Diagnostics - print some basic information about the driver. */ void print_info(); /** * print registers to console */ void print_registers(); protected: virtual int probe(); virtual int read_reg(uint8_t reg, uint8_t &val); private: float _min_distance; float _max_distance; work_s _work; RingBuffer *_reports; bool _sensor_ok; unsigned _measure_ticks; bool _collect_phase; int _class_instance; orb_advert_t _range_finder_topic; perf_counter_t _sample_perf; perf_counter_t _comms_errors; perf_counter_t _buffer_overflows; perf_counter_t _sensor_resets; perf_counter_t _sensor_zero_resets; uint16_t _last_distance; uint16_t _zero_counter; uint64_t _acquire_time_usec; volatile bool _pause_measurements; /**< the bus the device is connected to */ int _bus; /** * Test whether the device supported by the driver is present at a * specific address. * * @param address The I2C bus address to probe. * @return True if the device is present. */ int probe_address(uint8_t address); /** * Initialise the automatic measurement state machine and start it. * * @note This function is called at open and error time. It might make sense * to make it more aggressive about resetting the bus in case of errors. */ void start(); /** * Stop the automatic measurement state machine. */ void stop(); /** * Set the min and max distance thresholds if you want the end points of the sensors * range to be brought in at all, otherwise it will use the defaults LL40LS_MIN_DISTANCE * and LL40LS_MAX_DISTANCE */ void set_minimum_distance(float min); void set_maximum_distance(float max); float get_minimum_distance(); float get_maximum_distance(); /** * Perform a poll cycle; collect from the previous measurement * and start a new one. */ void cycle(); int measure(); int collect(); int reset_sensor(); /** * Static trampoline from the workq context; because we don't have a * generic workq wrapper yet. * * @param arg Instance pointer for the driver that is polling. */ static void cycle_trampoline(void *arg); }; /* * Driver 'main' command. */ extern "C" __EXPORT int ll40ls_main(int argc, char *argv[]); LL40LS::LL40LS(int bus, const char *path, int address) : I2C("LL40LS", path, bus, address, 100000), _min_distance(LL40LS_MIN_DISTANCE), _max_distance(LL40LS_MAX_DISTANCE), _reports(nullptr), _sensor_ok(false), _measure_ticks(0), _collect_phase(false), _class_instance(-1), _range_finder_topic(-1), _sample_perf(perf_alloc(PC_ELAPSED, "ll40ls_read")), _comms_errors(perf_alloc(PC_COUNT, "ll40ls_comms_errors")), _buffer_overflows(perf_alloc(PC_COUNT, "ll40ls_buffer_overflows")), _sensor_resets(perf_alloc(PC_COUNT, "ll40ls_resets")), _sensor_zero_resets(perf_alloc(PC_COUNT, "ll40ls_zero_resets")), _last_distance(0), _zero_counter(0), _pause_measurements(false), _bus(bus) { // up the retries since the device misses the first measure attempts _retries = 3; // enable debug() calls _debug_enabled = false; // work_cancel in the dtor will explode if we don't do this... memset(&_work, 0, sizeof(_work)); } LL40LS::~LL40LS() { /* make sure we are truly inactive */ stop(); /* free any existing reports */ if (_reports != nullptr) { delete _reports; } if (_class_instance != -1) { unregister_class_devname(RANGE_FINDER_BASE_DEVICE_PATH, _class_instance); } // free perf counters perf_free(_sample_perf); perf_free(_comms_errors); perf_free(_buffer_overflows); perf_free(_sensor_resets); perf_free(_sensor_zero_resets); } int LL40LS::init() { int ret = ERROR; /* do I2C init (and probe) first */ if (I2C::init() != OK) { goto out; } /* allocate basic report buffers */ _reports = new RingBuffer(2, sizeof(range_finder_report)); if (_reports == nullptr) { goto out; } _class_instance = register_class_devname(RANGE_FINDER_BASE_DEVICE_PATH); if (_class_instance == CLASS_DEVICE_PRIMARY) { /* get a publish handle on the range finder topic */ struct range_finder_report rf_report; measure(); _reports->get(&rf_report); _range_finder_topic = orb_advertise(ORB_ID(sensor_range_finder), &rf_report); if (_range_finder_topic < 0) { debug("failed to create sensor_range_finder object. Did you start uOrb?"); } } ret = OK; /* sensor is ok, but we don't really know if it is within range */ _sensor_ok = true; out: return ret; } int LL40LS::read_reg(uint8_t reg, uint8_t &val) { return transfer(®, 1, &val, 1); } int LL40LS::probe() { // cope with both old and new I2C bus address const uint8_t addresses[2] = {LL40LS_BASEADDR, LL40LS_BASEADDR_OLD}; // more retries for detection _retries = 10; for (uint8_t i=0; i 100)) { return -EINVAL; } irqstate_t flags = irqsave(); if (!_reports->resize(arg)) { irqrestore(flags); return -ENOMEM; } irqrestore(flags); return OK; } case SENSORIOCGQUEUEDEPTH: return _reports->size(); case SENSORIOCRESET: reset_sensor(); return OK; case RANGEFINDERIOCSETMINIUMDISTANCE: { set_minimum_distance(*(float *)arg); return 0; } break; case RANGEFINDERIOCSETMAXIUMDISTANCE: { set_maximum_distance(*(float *)arg); return 0; } break; default: /* give it to the superclass */ return I2C::ioctl(filp, cmd, arg); } } ssize_t LL40LS::read(struct file *filp, char *buffer, size_t buflen) { unsigned count = buflen / sizeof(struct range_finder_report); struct range_finder_report *rbuf = reinterpret_cast(buffer); int ret = 0; /* buffer must be large enough */ if (count < 1) { return -ENOSPC; } /* if automatic measurement is enabled */ if (_measure_ticks > 0) { /* * While there is space in the caller's buffer, and reports, copy them. * Note that we may be pre-empted by the workq thread while we are doing this; * we are careful to avoid racing with them. */ while (count--) { if (_reports->get(rbuf)) { ret += sizeof(*rbuf); rbuf++; } } /* if there was no data, warn the caller */ return ret ? ret : -EAGAIN; } /* manual measurement - run one conversion */ do { _reports->flush(); /* trigger a measurement */ if (OK != measure()) { ret = -EIO; break; } /* wait for it to complete */ usleep(LL40LS_CONVERSION_INTERVAL); /* run the collection phase */ if (OK != collect()) { ret = -EIO; break; } /* state machine will have generated a report, copy it out */ if (_reports->get(rbuf)) { ret = sizeof(*rbuf); } } while (0); return ret; } int LL40LS::measure() { int ret; if (_pause_measurements) { // we are in print_registers() and need to avoid // acquisition to keep the I2C peripheral on the // sensor active return OK; } /* * Send the command to begin a measurement. */ const uint8_t cmd[2] = { LL40LS_MEASURE_REG, LL40LS_MSRREG_ACQUIRE }; ret = transfer(cmd, sizeof(cmd), nullptr, 0); if (OK != ret) { perf_count(_comms_errors); debug("i2c::transfer returned %d", ret); // if we are getting lots of I2C transfer errors try // resetting the sensor if (perf_event_count(_comms_errors) % 10 == 0) { perf_count(_sensor_resets); reset_sensor(); } return ret; } // remember when we sent the acquire so we can know when the // acquisition has timed out _acquire_time_usec = hrt_absolute_time(); ret = OK; return ret; } /* reset the sensor to power on defaults */ int LL40LS::reset_sensor() { const uint8_t cmd[2] = { LL40LS_MEASURE_REG, LL40LS_MSRREG_RESET }; int ret = transfer(cmd, sizeof(cmd), nullptr, 0); return ret; } /* dump sensor registers for debugging */ void LL40LS::print_registers() { _pause_measurements = true; printf("ll40ls registers\n"); // wait for a while to ensure the lidar is in a ready state usleep(50000); for (uint8_t reg=0; reg<=0x67; reg++) { uint8_t val = 0; int ret = transfer(®, 1, &val, 1); if (ret != OK) { printf("%02x:XX ",(unsigned)reg); } else { printf("%02x:%02x ",(unsigned)reg, (unsigned)val); } if (reg % 16 == 15) { printf("\n"); } } printf("\n"); _pause_measurements = false; } int LL40LS::collect() { int ret = -EIO; /* read from the sensor */ uint8_t val[2] = {0, 0}; perf_begin(_sample_perf); // read the high and low byte distance registers uint8_t distance_reg = LL40LS_DISTHIGH_REG; ret = transfer(&distance_reg, 1, &val[0], sizeof(val)); if (ret < 0) { if (hrt_absolute_time() - _acquire_time_usec > LL40LS_CONVERSION_TIMEOUT) { /* NACKs from the sensor are expected when we read before it is ready, so only consider it an error if more than 100ms has elapsed. */ debug("error reading from sensor: %d", ret); perf_count(_comms_errors); if (perf_event_count(_comms_errors) % 10 == 0) { perf_count(_sensor_resets); reset_sensor(); } } perf_end(_sample_perf); // if we are getting lots of I2C transfer errors try // resetting the sensor return ret; } uint16_t distance = (val[0] << 8) | val[1]; float si_units = distance * 0.01f; /* cm to m */ struct range_finder_report report; if (distance == 0) { _zero_counter++; if (_zero_counter == 20) { /* we have had 20 zeros in a row - reset the sensor. This is a known bad state of the sensor where it returns 16 bits of zero for the distance with a trailing NACK, and keeps doing that even when the target comes into a valid range. */ _zero_counter = 0; perf_end(_sample_perf); perf_count(_sensor_zero_resets); return reset_sensor(); } } else { _zero_counter = 0; } _last_distance = distance; /* this should be fairly close to the end of the measurement, so the best approximation of the time */ report.timestamp = hrt_absolute_time(); report.error_count = perf_event_count(_comms_errors); report.distance = si_units; report.minimum_distance = get_minimum_distance(); report.maximum_distance = get_maximum_distance(); if (si_units > get_minimum_distance() && si_units < get_maximum_distance()) { report.valid = 1; } else { report.valid = 0; } /* publish it, if we are the primary */ if (_range_finder_topic >= 0) { orb_publish(ORB_ID(sensor_range_finder), _range_finder_topic, &report); } if (_reports->force(&report)) { perf_count(_buffer_overflows); } /* notify anyone waiting for data */ poll_notify(POLLIN); ret = OK; perf_end(_sample_perf); return ret; } void LL40LS::start() { /* reset the report ring and state machine */ _collect_phase = false; _reports->flush(); /* schedule a cycle to start things */ work_queue(HPWORK, &_work, (worker_t)&LL40LS::cycle_trampoline, this, 1); /* notify about state change */ struct subsystem_info_s info = { true, true, true, SUBSYSTEM_TYPE_RANGEFINDER }; static orb_advert_t pub = -1; if (pub > 0) { orb_publish(ORB_ID(subsystem_info), pub, &info); } else { pub = orb_advertise(ORB_ID(subsystem_info), &info); } } void LL40LS::stop() { work_cancel(HPWORK, &_work); } void LL40LS::cycle_trampoline(void *arg) { LL40LS *dev = (LL40LS *)arg; dev->cycle(); } void LL40LS::cycle() { /* collection phase? */ if (_collect_phase) { /* try a collection */ if (OK != collect()) { debug("collection error"); /* if we've been waiting more than 200ms then send a new acquire */ if (hrt_absolute_time() - _acquire_time_usec > LL40LS_CONVERSION_TIMEOUT*2) { _collect_phase = false; } } else { /* next phase is measurement */ _collect_phase = false; /* * Is there a collect->measure gap? */ if (_measure_ticks > USEC2TICK(LL40LS_CONVERSION_INTERVAL)) { /* schedule a fresh cycle call when we are ready to measure again */ work_queue(HPWORK, &_work, (worker_t)&LL40LS::cycle_trampoline, this, _measure_ticks - USEC2TICK(LL40LS_CONVERSION_INTERVAL)); return; } } } if (_collect_phase == false) { /* measurement phase */ if (OK != measure()) { debug("measure error"); } else { /* next phase is collection. Don't switch to collection phase until we have a successful acquire request I2C transfer */ _collect_phase = true; } } /* schedule a fresh cycle call when the measurement is done */ work_queue(HPWORK, &_work, (worker_t)&LL40LS::cycle_trampoline, this, USEC2TICK(LL40LS_CONVERSION_INTERVAL)); } void LL40LS::print_info() { perf_print_counter(_sample_perf); perf_print_counter(_comms_errors); perf_print_counter(_buffer_overflows); perf_print_counter(_sensor_resets); perf_print_counter(_sensor_zero_resets); printf("poll interval: %u ticks\n", _measure_ticks); _reports->print_info("report queue"); printf("distance: %ucm (0x%04x)\n", (unsigned)_last_distance, (unsigned)_last_distance); } /** * Local functions in support of the shell command. */ namespace ll40ls { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif const int ERROR = -1; LL40LS *g_dev_int; LL40LS *g_dev_ext; void start(int bus); void stop(int bus); void test(int bus); void reset(int bus); void info(int bus); void regdump(int bus); void usage(); /** * Start the driver. */ void start(int bus) { /* create the driver, attempt expansion bus first */ if (bus == -1 || bus == PX4_I2C_BUS_EXPANSION) { if (g_dev_ext != nullptr) errx(0, "already started external"); g_dev_ext = new LL40LS(PX4_I2C_BUS_EXPANSION, LL40LS_DEVICE_PATH_EXT); if (g_dev_ext != nullptr && OK != g_dev_ext->init()) { delete g_dev_ext; g_dev_ext = nullptr; if (bus == PX4_I2C_BUS_EXPANSION) { goto fail; } } } #ifdef PX4_I2C_BUS_ONBOARD /* if this failed, attempt onboard sensor */ if (bus == -1 || bus == PX4_I2C_BUS_ONBOARD) { if (g_dev_int != nullptr) errx(0, "already started internal"); g_dev_int = new LL40LS(PX4_I2C_BUS_ONBOARD, LL40LS_DEVICE_PATH_INT); if (g_dev_int != nullptr && OK != g_dev_int->init()) { /* tear down the failing onboard instance */ delete g_dev_int; g_dev_int = nullptr; if (bus == PX4_I2C_BUS_ONBOARD) { goto fail; } } if (g_dev_int == nullptr && bus == PX4_I2C_BUS_ONBOARD) { goto fail; } } #endif /* set the poll rate to default, starts automatic data collection */ if (g_dev_int != nullptr) { int fd = open(LL40LS_DEVICE_PATH_INT, O_RDONLY); if (fd == -1) { goto fail; } int ret = ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT); close(fd); if (ret < 0) { goto fail; } } if (g_dev_ext != nullptr) { int fd = open(LL40LS_DEVICE_PATH_EXT, O_RDONLY); if (fd == -1) { goto fail; } int ret = ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT); close(fd); if (ret < 0) { goto fail; } } exit(0); fail: if (g_dev_int != nullptr && (bus == -1 || bus == PX4_I2C_BUS_ONBOARD)) { delete g_dev_int; g_dev_int = nullptr; } if (g_dev_ext != nullptr && (bus == -1 || bus == PX4_I2C_BUS_EXPANSION)) { delete g_dev_ext; g_dev_ext = nullptr; } errx(1, "driver start failed"); } /** * Stop the driver */ void stop(int bus) { LL40LS **g_dev = (bus == PX4_I2C_BUS_ONBOARD?&g_dev_int:&g_dev_ext); if (*g_dev != nullptr) { delete *g_dev; *g_dev = nullptr; } else { errx(1, "driver not running"); } exit(0); } /** * Perform some basic functional tests on the driver; * make sure we can collect data from the sensor in polled * and automatic modes. */ void test(int bus) { struct range_finder_report report; ssize_t sz; int ret; const char *path = (bus==PX4_I2C_BUS_ONBOARD?LL40LS_DEVICE_PATH_INT:LL40LS_DEVICE_PATH_EXT); int fd = open(path, O_RDONLY); if (fd < 0) { err(1, "%s open failed (try 'll40ls start' if the driver is not running", path); } /* do a simple demand read */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { err(1, "immediate read failed"); } warnx("single read"); warnx("measurement: %0.2f m", (double)report.distance); warnx("time: %lld", report.timestamp); /* start the sensor polling at 2Hz */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) { errx(1, "failed to set 2Hz poll rate"); } /* read the sensor 5x and report each value */ for (unsigned i = 0; i < 5; i++) { struct pollfd fds; /* wait for data to be ready */ fds.fd = fd; fds.events = POLLIN; ret = poll(&fds, 1, 2000); if (ret != 1) { errx(1, "timed out waiting for sensor data"); } /* now go get it */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { err(1, "periodic read failed"); } warnx("periodic read %u", i); warnx("measurement: %0.3f", (double)report.distance); warnx("time: %lld", report.timestamp); } /* reset the sensor polling to default rate */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT)) { errx(1, "failed to set default poll rate"); } errx(0, "PASS"); } /** * Reset the driver. */ void reset(int bus) { const char *path = (bus==PX4_I2C_BUS_ONBOARD?LL40LS_DEVICE_PATH_INT:LL40LS_DEVICE_PATH_EXT); int fd = open(path, O_RDONLY); if (fd < 0) { err(1, "failed "); } if (ioctl(fd, SENSORIOCRESET, 0) < 0) { err(1, "driver reset failed"); } if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) { err(1, "driver poll restart failed"); } exit(0); } /** * Print a little info about the driver. */ void info(int bus) { LL40LS *g_dev = (bus == PX4_I2C_BUS_ONBOARD?g_dev_int:g_dev_ext); if (g_dev == nullptr) { errx(1, "driver not running"); } printf("state @ %p\n", g_dev); g_dev->print_info(); exit(0); } /** * Dump registers */ void regdump(int bus) { LL40LS *g_dev = (bus == PX4_I2C_BUS_ONBOARD?g_dev_int:g_dev_ext); if (g_dev == nullptr) { errx(1, "driver not running"); } printf("regdump @ %p\n", g_dev); g_dev->print_registers(); exit(0); } void usage() { warnx("missing command: try 'start', 'stop', 'info', 'test', 'reset', 'info' or 'regdump'"); warnx("options:"); warnx(" -X only external bus"); #ifdef PX4_I2C_BUS_ONBOARD warnx(" -I only internal bus"); #endif } } // namespace int ll40ls_main(int argc, char *argv[]) { int ch; int bus = -1; while ((ch = getopt(argc, argv, "XI")) != EOF) { switch (ch) { #ifdef PX4_I2C_BUS_ONBOARD case 'I': bus = PX4_I2C_BUS_ONBOARD; break; #endif case 'X': bus = PX4_I2C_BUS_EXPANSION; break; default: ll40ls::usage(); exit(0); } } const char *verb = argv[optind]; /* * Start/load the driver. */ if (!strcmp(verb, "start")) { ll40ls::start(bus); } /* * Stop the driver */ if (!strcmp(verb, "stop")) { ll40ls::stop(bus); } /* * Test the driver/device. */ if (!strcmp(verb, "test")) { ll40ls::test(bus); } /* * Reset the driver. */ if (!strcmp(verb, "reset")) { ll40ls::reset(bus); } /* * dump registers */ if (!strcmp(verb, "regdump")) { ll40ls::regdump(bus); } /* * Print driver information. */ if (!strcmp(verb, "info") || !strcmp(verb, "status")) { ll40ls::info(bus); } errx(1, "unrecognized command, try 'start', 'test', 'reset', 'info' or 'regdump'"); }