/**************************************************************************** * * Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file px4flow.cpp * @author Dominik Honegger * * Driver for the PX4FLOW module connected via I2C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Configuration Constants */ #define I2C_FLOW_ADDRESS 0x42 ///< 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49 /* PX4FLOW Registers addresses */ #define PX4FLOW_REG 0x16 ///< Measure Register 22 #define PX4FLOW_CONVERSION_INTERVAL 20000 ///< in microseconds! 20000 = 50 Hz 100000 = 10Hz #define PX4FLOW_I2C_MAX_BUS_SPEED 400000 ///< 400 KHz maximum speed /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; #ifndef CONFIG_SCHED_WORKQUEUE # error This requires CONFIG_SCHED_WORKQUEUE. #endif #include "i2c_frame.h" struct i2c_frame f; struct i2c_integral_frame f_integral; class PX4FLOW: public device::I2C { public: PX4FLOW(int bus, int address = I2C_FLOW_ADDRESS, enum Rotation rotation = (enum Rotation)0); virtual ~PX4FLOW(); virtual int init(); virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); virtual int ioctl(struct file *filp, int cmd, unsigned long arg); /** * Diagnostics - print some basic information about the driver. */ void print_info(); protected: virtual int probe(); private: work_s _work; RingBuffer *_reports; bool _sensor_ok; int _measure_ticks; bool _collect_phase; orb_advert_t _px4flow_topic; perf_counter_t _sample_perf; perf_counter_t _comms_errors; perf_counter_t _buffer_overflows; enum Rotation _sensor_rotation; /** * Test whether the device supported by the driver is present at a * specific address. * * @param address The I2C bus address to probe. * @return True if the device is present. */ int probe_address(uint8_t address); /** * Initialise the automatic measurement state machine and start it. * * @note This function is called at open and error time. It might make sense * to make it more aggressive about resetting the bus in case of errors. */ void start(); /** * Stop the automatic measurement state machine. */ void stop(); /** * Perform a poll cycle; collect from the previous measurement * and start a new one. */ void cycle(); int measure(); int collect(); /** * Static trampoline from the workq context; because we don't have a * generic workq wrapper yet. * * @param arg Instance pointer for the driver that is polling. */ static void cycle_trampoline(void *arg); }; /* * Driver 'main' command. */ extern "C" __EXPORT int px4flow_main(int argc, char *argv[]); PX4FLOW::PX4FLOW(int bus, int address, enum Rotation rotation) : I2C("PX4FLOW", PX4FLOW0_DEVICE_PATH, bus, address, PX4FLOW_I2C_MAX_BUS_SPEED), /* 100-400 KHz */ _reports(nullptr), _sensor_ok(false), _measure_ticks(0), _collect_phase(false), _px4flow_topic(-1), _sample_perf(perf_alloc(PC_ELAPSED, "px4flow_read")), _comms_errors(perf_alloc(PC_COUNT, "px4flow_comms_errors")), _buffer_overflows(perf_alloc(PC_COUNT, "px4flow_buffer_overflows")), _sensor_rotation(rotation) { // enable debug() calls _debug_enabled = false; // work_cancel in the dtor will explode if we don't do this... memset(&_work, 0, sizeof(_work)); } PX4FLOW::~PX4FLOW() { /* make sure we are truly inactive */ stop(); /* free any existing reports */ if (_reports != nullptr) { delete _reports; } } int PX4FLOW::init() { int ret = ERROR; /* do I2C init (and probe) first */ if (I2C::init() != OK) { goto out; } /* allocate basic report buffers */ _reports = new RingBuffer(2, sizeof(optical_flow_s)); if (_reports == nullptr) { goto out; } ret = OK; /* sensor is ok, but we don't really know if it is within range */ _sensor_ok = true; out: return ret; } int PX4FLOW::probe() { uint8_t val[I2C_FRAME_SIZE]; // to be sure this is not a ll40ls Lidar (which can also be on // 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address // 0. The ll40ls gives an error for that, whereas the flow // happily returns some data if (transfer(nullptr, 0, &val[0], 22) != OK) { return -EIO; } // that worked, so start a measurement cycle return measure(); } int PX4FLOW::ioctl(struct file *filp, int cmd, unsigned long arg) { switch (cmd) { case SENSORIOCSPOLLRATE: { switch (arg) { /* switching to manual polling */ case SENSOR_POLLRATE_MANUAL: stop(); _measure_ticks = 0; return OK; /* external signalling (DRDY) not supported */ case SENSOR_POLLRATE_EXTERNAL: /* zero would be bad */ case 0: return -EINVAL; /* set default/max polling rate */ case SENSOR_POLLRATE_MAX: case SENSOR_POLLRATE_DEFAULT: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* set interval for next measurement to minimum legal value */ _measure_ticks = USEC2TICK(PX4FLOW_CONVERSION_INTERVAL); /* if we need to start the poll state machine, do it */ if (want_start) { start(); } return OK; } /* adjust to a legal polling interval in Hz */ default: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* convert hz to tick interval via microseconds */ unsigned ticks = USEC2TICK(1000000 / arg); /* check against maximum rate */ if (ticks < USEC2TICK(PX4FLOW_CONVERSION_INTERVAL)) { return -EINVAL; } /* update interval for next measurement */ _measure_ticks = ticks; /* if we need to start the poll state machine, do it */ if (want_start) { start(); } return OK; } } } case SENSORIOCGPOLLRATE: if (_measure_ticks == 0) { return SENSOR_POLLRATE_MANUAL; } return (1000 / _measure_ticks); case SENSORIOCSQUEUEDEPTH: { /* lower bound is mandatory, upper bound is a sanity check */ if ((arg < 1) || (arg > 100)) { return -EINVAL; } irqstate_t flags = irqsave(); if (!_reports->resize(arg)) { irqrestore(flags); return -ENOMEM; } irqrestore(flags); return OK; } case SENSORIOCGQUEUEDEPTH: return _reports->size(); case SENSORIOCSROTATION: _sensor_rotation = (enum Rotation)arg; return OK; case SENSORIOCGROTATION: return _sensor_rotation; case SENSORIOCRESET: /* XXX implement this */ return -EINVAL; default: /* give it to the superclass */ return I2C::ioctl(filp, cmd, arg); } } ssize_t PX4FLOW::read(struct file *filp, char *buffer, size_t buflen) { unsigned count = buflen / sizeof(struct optical_flow_s); struct optical_flow_s *rbuf = reinterpret_cast(buffer); int ret = 0; /* buffer must be large enough */ if (count < 1) { return -ENOSPC; } /* if automatic measurement is enabled */ if (_measure_ticks > 0) { /* * While there is space in the caller's buffer, and reports, copy them. * Note that we may be pre-empted by the workq thread while we are doing this; * we are careful to avoid racing with them. */ while (count--) { if (_reports->get(rbuf)) { ret += sizeof(*rbuf); rbuf++; } } /* if there was no data, warn the caller */ return ret ? ret : -EAGAIN; } /* manual measurement - run one conversion */ do { _reports->flush(); /* trigger a measurement */ if (OK != measure()) { ret = -EIO; break; } /* run the collection phase */ if (OK != collect()) { ret = -EIO; break; } /* state machine will have generated a report, copy it out */ if (_reports->get(rbuf)) { ret = sizeof(*rbuf); } } while (0); return ret; } int PX4FLOW::measure() { int ret; /* * Send the command to begin a measurement. */ uint8_t cmd = PX4FLOW_REG; ret = transfer(&cmd, 1, nullptr, 0); if (OK != ret) { perf_count(_comms_errors); debug("i2c::transfer returned %d", ret); return ret; } ret = OK; return ret; } int PX4FLOW::collect() { int ret = -EIO; /* read from the sensor */ uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { 0 }; perf_begin(_sample_perf); if (PX4FLOW_REG == 0x00) { ret = transfer(nullptr, 0, &val[0], I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE); } if (PX4FLOW_REG == 0x16) { ret = transfer(nullptr, 0, &val[0], I2C_INTEGRAL_FRAME_SIZE); } if (ret < 0) { debug("error reading from sensor: %d", ret); perf_count(_comms_errors); perf_end(_sample_perf); return ret; } if (PX4FLOW_REG == 0) { memcpy(&f, val, I2C_FRAME_SIZE); memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); } if (PX4FLOW_REG == 0x16) { memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); } struct optical_flow_s report; report.timestamp = hrt_absolute_time(); report.pixel_flow_x_integral = static_cast(f_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians report.pixel_flow_y_integral = static_cast(f_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians report.frame_count_since_last_readout = f_integral.frame_count_since_last_readout; report.ground_distance_m = static_cast(f_integral.ground_distance) / 1000.0f;//convert to meters report.quality = f_integral.qual; //0:bad ; 255 max quality report.gyro_x_rate_integral = static_cast(f_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians report.gyro_y_rate_integral = static_cast(f_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians report.gyro_z_rate_integral = static_cast(f_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians report.integration_timespan = f_integral.integration_timespan; //microseconds report.time_since_last_sonar_update = f_integral.sonar_timestamp;//microseconds report.gyro_temperature = f_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius report.sensor_id = 0; /* rotate measurements according to parameter */ float zeroval = 0.0f; rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval); if (_px4flow_topic < 0) { _px4flow_topic = orb_advertise(ORB_ID(optical_flow), &report); } else { /* publish it */ orb_publish(ORB_ID(optical_flow), _px4flow_topic, &report); } /* post a report to the ring */ if (_reports->force(&report)) { perf_count(_buffer_overflows); } /* notify anyone waiting for data */ poll_notify(POLLIN); ret = OK; perf_end(_sample_perf); return ret; } void PX4FLOW::start() { /* reset the report ring and state machine */ _collect_phase = false; _reports->flush(); /* schedule a cycle to start things */ work_queue(HPWORK, &_work, (worker_t)&PX4FLOW::cycle_trampoline, this, 1); /* notify about state change */ struct subsystem_info_s info = { true, true, true, SUBSYSTEM_TYPE_OPTICALFLOW }; static orb_advert_t pub = -1; if (pub > 0) { orb_publish(ORB_ID(subsystem_info), pub, &info); } else { pub = orb_advertise(ORB_ID(subsystem_info), &info); } } void PX4FLOW::stop() { work_cancel(HPWORK, &_work); } void PX4FLOW::cycle_trampoline(void *arg) { PX4FLOW *dev = (PX4FLOW *)arg; dev->cycle(); } void PX4FLOW::cycle() { if (OK != measure()) { debug("measure error"); } /* perform collection */ if (OK != collect()) { debug("collection error"); /* restart the measurement state machine */ start(); return; } work_queue(HPWORK, &_work, (worker_t)&PX4FLOW::cycle_trampoline, this, _measure_ticks); } void PX4FLOW::print_info() { perf_print_counter(_sample_perf); perf_print_counter(_comms_errors); perf_print_counter(_buffer_overflows); printf("poll interval: %u ticks\n", _measure_ticks); _reports->print_info("report queue"); } /** * Local functions in support of the shell command. */ namespace px4flow { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif const int ERROR = -1; PX4FLOW *g_dev; void start(); void stop(); void test(); void reset(); void info(); /** * Start the driver. */ void start() { int fd; if (g_dev != nullptr) { errx(1, "already started"); } /* create the driver */ g_dev = new PX4FLOW(PX4_I2C_BUS_EXPANSION); if (g_dev == nullptr) { goto fail; } if (OK != g_dev->init()) { #ifdef PX4_I2C_BUS_ESC delete g_dev; /* try 2nd bus */ g_dev = new PX4FLOW(PX4_I2C_BUS_ESC); if (g_dev == nullptr) { goto fail; } if (OK != g_dev->init()) { #endif delete g_dev; /* try 3rd bus */ g_dev = new PX4FLOW(PX4_I2C_BUS_ONBOARD); if (g_dev == nullptr) { goto fail; } if (OK != g_dev->init()) { goto fail; } #ifdef PX4_I2C_BUS_ESC } #endif } /* set the poll rate to default, starts automatic data collection */ fd = open(PX4FLOW0_DEVICE_PATH, O_RDONLY); if (fd < 0) { goto fail; } if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_MAX) < 0) { goto fail; } exit(0); fail: if (g_dev != nullptr) { delete g_dev; g_dev = nullptr; } errx(1, "driver start failed"); } /** * Stop the driver */ void stop() { if (g_dev != nullptr) { delete g_dev; g_dev = nullptr; } else { errx(1, "driver not running"); } exit(0); } /** * Perform some basic functional tests on the driver; * make sure we can collect data from the sensor in polled * and automatic modes. */ void test() { struct optical_flow_s report; ssize_t sz; int ret; int fd = open(PX4FLOW0_DEVICE_PATH, O_RDONLY); if (fd < 0) { err(1, "%s open failed (try 'px4flow start' if the driver is not running", PX4FLOW0_DEVICE_PATH); } /* do a simple demand read */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { warnx("immediate read failed"); } warnx("single read"); warnx("pixel_flow_x_integral: %i", f_integral.pixel_flow_x_integral); warnx("pixel_flow_y_integral: %i", f_integral.pixel_flow_y_integral); warnx("framecount_integral: %u", f_integral.frame_count_since_last_readout); /* start the sensor polling at 10Hz */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 10)) { errx(1, "failed to set 10Hz poll rate"); } /* read the sensor 5x and report each value */ for (unsigned i = 0; i < 10; i++) { struct pollfd fds; /* wait for data to be ready */ fds.fd = fd; fds.events = POLLIN; ret = poll(&fds, 1, 2000); if (ret != 1) { errx(1, "timed out waiting for sensor data"); } /* now go get it */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { err(1, "periodic read failed"); } warnx("periodic read %u", i); warnx("framecount_total: %u", f.frame_count); warnx("framecount_integral: %u", f_integral.frame_count_since_last_readout); warnx("pixel_flow_x_integral: %i", f_integral.pixel_flow_x_integral); warnx("pixel_flow_y_integral: %i", f_integral.pixel_flow_y_integral); warnx("gyro_x_rate_integral: %i", f_integral.gyro_x_rate_integral); warnx("gyro_y_rate_integral: %i", f_integral.gyro_y_rate_integral); warnx("gyro_z_rate_integral: %i", f_integral.gyro_z_rate_integral); warnx("integration_timespan [us]: %u", f_integral.integration_timespan); warnx("ground_distance: %0.2f m", (double) f_integral.ground_distance / 1000); warnx("time since last sonar update [us]: %i", f_integral.sonar_timestamp); warnx("quality integration average : %i", f_integral.qual); warnx("quality : %i", f.qual); } errx(0, "PASS"); } /** * Reset the driver. */ void reset() { int fd = open(PX4FLOW0_DEVICE_PATH, O_RDONLY); if (fd < 0) { err(1, "failed "); } if (ioctl(fd, SENSORIOCRESET, 0) < 0) { err(1, "driver reset failed"); } if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) { err(1, "driver poll restart failed"); } exit(0); } /** * Print a little info about the driver. */ void info() { if (g_dev == nullptr) { errx(1, "driver not running"); } printf("state @ %p\n", g_dev); g_dev->print_info(); exit(0); } } // namespace int px4flow_main(int argc, char *argv[]) { /* * Start/load the driver. */ if (!strcmp(argv[1], "start")) { px4flow::start(); } /* * Stop the driver */ if (!strcmp(argv[1], "stop")) { px4flow::stop(); } /* * Test the driver/device. */ if (!strcmp(argv[1], "test")) { px4flow::test(); } /* * Reset the driver. */ if (!strcmp(argv[1], "reset")) { px4flow::reset(); } /* * Print driver information. */ if (!strcmp(argv[1], "info") || !strcmp(argv[1], "status")) { px4flow::info(); } errx(1, "unrecognized command, try 'start', 'test', 'reset' or 'info'"); }