/**************************************************************************** * * Copyright (c) 2013 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file trone.cpp * @author Luis Rodrigues * * Driver for the TeraRanger One range finders connected via I2C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Configuration Constants */ #define TRONE_BUS PX4_I2C_BUS_EXPANSION #define TRONE_BASEADDR 0x30 /* 7-bit address */ #define TRONE_DEVICE_PATH "/dev/trone" /* TRONE Registers addresses */ #define TRONE_MEASURE_REG 0x00 /* Measure range register */ /* Device limits */ #define TRONE_MIN_DISTANCE (0.20f) #define TRONE_MAX_DISTANCE (14.00f) #define TRONE_CONVERSION_INTERVAL 50000 /* 50ms */ /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; #ifndef CONFIG_SCHED_WORKQUEUE # error This requires CONFIG_SCHED_WORKQUEUE. #endif class TRONE : public device::I2C { public: TRONE(int bus = TRONE_BUS, int address = TRONE_BASEADDR); virtual ~TRONE(); virtual int init(); virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); virtual int ioctl(struct file *filp, int cmd, unsigned long arg); /** * Diagnostics - print some basic information about the driver. */ void print_info(); protected: virtual int probe(); private: float _min_distance; float _max_distance; work_s _work; RingBuffer *_reports; bool _sensor_ok; int _measure_ticks; bool _collect_phase; int _class_instance; orb_advert_t _range_finder_topic; perf_counter_t _sample_perf; perf_counter_t _comms_errors; perf_counter_t _buffer_overflows; /** * Test whether the device supported by the driver is present at a * specific address. * * @param address The I2C bus address to probe. * @return True if the device is present. */ int probe_address(uint8_t address); /** * Initialise the automatic measurement state machine and start it. * * @note This function is called at open and error time. It might make sense * to make it more aggressive about resetting the bus in case of errors. */ void start(); /** * Stop the automatic measurement state machine. */ void stop(); /** * Set the min and max distance thresholds if you want the end points of the sensors * range to be brought in at all, otherwise it will use the defaults TRONE_MIN_DISTANCE * and TRONE_MAX_DISTANCE */ void set_minimum_distance(float min); void set_maximum_distance(float max); float get_minimum_distance(); float get_maximum_distance(); /** * Perform a poll cycle; collect from the previous measurement * and start a new one. */ void cycle(); int measure(); int collect(); /** * Static trampoline from the workq context; because we don't have a * generic workq wrapper yet. * * @param arg Instance pointer for the driver that is polling. */ static void cycle_trampoline(void *arg); }; static const uint8_t crc_table[] = { 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15, 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d, 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65, 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d, 0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5, 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd, 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85, 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd, 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2, 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea, 0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2, 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a, 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32, 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a, 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42, 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a, 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c, 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4, 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec, 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4, 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c, 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44, 0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c, 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34, 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b, 0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63, 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b, 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13, 0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb, 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83, 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb, 0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3 }; uint8_t crc8(uint8_t *p, uint8_t len){ uint16_t i; uint16_t crc = 0x0; while (len--) { i = (crc ^ *p++) & 0xFF; crc = (crc_table[i] ^ (crc << 8)) & 0xFF; } return crc & 0xFF; } /* * Driver 'main' command. */ extern "C" __EXPORT int trone_main(int argc, char *argv[]); TRONE::TRONE(int bus, int address) : I2C("TRONE", TRONE_DEVICE_PATH, bus, address, 100000), _min_distance(TRONE_MIN_DISTANCE), _max_distance(TRONE_MAX_DISTANCE), _reports(nullptr), _sensor_ok(false), _measure_ticks(0), _collect_phase(false), _class_instance(-1), _range_finder_topic(-1), _sample_perf(perf_alloc(PC_ELAPSED, "trone_read")), _comms_errors(perf_alloc(PC_COUNT, "trone_comms_errors")), _buffer_overflows(perf_alloc(PC_COUNT, "trone_buffer_overflows")) { // up the retries since the device misses the first measure attempts I2C::_retries = 3; // enable debug() calls _debug_enabled = false; // work_cancel in the dtor will explode if we don't do this... memset(&_work, 0, sizeof(_work)); } TRONE::~TRONE() { /* make sure we are truly inactive */ stop(); /* free any existing reports */ if (_reports != nullptr) { delete _reports; } if (_class_instance != -1) { unregister_class_devname(RANGE_FINDER_DEVICE_PATH, _class_instance); } // free perf counters perf_free(_sample_perf); perf_free(_comms_errors); perf_free(_buffer_overflows); } int TRONE::init() { int ret = ERROR; /* do I2C init (and probe) first */ if (I2C::init() != OK) { goto out; } /* allocate basic report buffers */ _reports = new RingBuffer(2, sizeof(range_finder_report)); if (_reports == nullptr) { goto out; } _class_instance = register_class_devname(RANGE_FINDER_DEVICE_PATH); if (_class_instance == CLASS_DEVICE_PRIMARY) { /* get a publish handle on the range finder topic */ struct range_finder_report rf_report; measure(); _reports->get(&rf_report); _range_finder_topic = orb_advertise(ORB_ID(sensor_range_finder), &rf_report); if (_range_finder_topic < 0) { debug("failed to create sensor_range_finder object. Did you start uOrb?"); } } ret = OK; /* sensor is ok, but we don't really know if it is within range */ _sensor_ok = true; out: return ret; } int TRONE::probe() { return measure(); } void TRONE::set_minimum_distance(float min) { _min_distance = min; } void TRONE::set_maximum_distance(float max) { _max_distance = max; } float TRONE::get_minimum_distance() { return _min_distance; } float TRONE::get_maximum_distance() { return _max_distance; } int TRONE::ioctl(struct file *filp, int cmd, unsigned long arg) { switch (cmd) { case SENSORIOCSPOLLRATE: { switch (arg) { /* switching to manual polling */ case SENSOR_POLLRATE_MANUAL: stop(); _measure_ticks = 0; return OK; /* external signalling (DRDY) not supported */ case SENSOR_POLLRATE_EXTERNAL: /* zero would be bad */ case 0: return -EINVAL; /* set default/max polling rate */ case SENSOR_POLLRATE_MAX: case SENSOR_POLLRATE_DEFAULT: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* set interval for next measurement to minimum legal value */ _measure_ticks = USEC2TICK(TRONE_CONVERSION_INTERVAL); /* if we need to start the poll state machine, do it */ if (want_start) { start(); } return OK; } /* adjust to a legal polling interval in Hz */ default: { /* do we need to start internal polling? */ bool want_start = (_measure_ticks == 0); /* convert hz to tick interval via microseconds */ unsigned ticks = USEC2TICK(1000000 / arg); /* check against maximum rate */ if (ticks < USEC2TICK(TRONE_CONVERSION_INTERVAL)) { return -EINVAL; } /* update interval for next measurement */ _measure_ticks = ticks; /* if we need to start the poll state machine, do it */ if (want_start) { start(); } return OK; } } } case SENSORIOCGPOLLRATE: if (_measure_ticks == 0) { return SENSOR_POLLRATE_MANUAL; } return (1000 / _measure_ticks); case SENSORIOCSQUEUEDEPTH: { /* lower bound is mandatory, upper bound is a sanity check */ if ((arg < 1) || (arg > 100)) { return -EINVAL; } irqstate_t flags = irqsave(); if (!_reports->resize(arg)) { irqrestore(flags); return -ENOMEM; } irqrestore(flags); return OK; } case SENSORIOCGQUEUEDEPTH: return _reports->size(); case SENSORIOCRESET: /* XXX implement this */ return -EINVAL; case RANGEFINDERIOCSETMINIUMDISTANCE: { set_minimum_distance(*(float *)arg); return 0; } break; case RANGEFINDERIOCSETMAXIUMDISTANCE: { set_maximum_distance(*(float *)arg); return 0; } break; default: /* give it to the superclass */ return I2C::ioctl(filp, cmd, arg); } } ssize_t TRONE::read(struct file *filp, char *buffer, size_t buflen) { unsigned count = buflen / sizeof(struct range_finder_report); struct range_finder_report *rbuf = reinterpret_cast(buffer); int ret = 0; /* buffer must be large enough */ if (count < 1) { return -ENOSPC; } /* if automatic measurement is enabled */ if (_measure_ticks > 0) { /* * While there is space in the caller's buffer, and reports, copy them. * Note that we may be pre-empted by the workq thread while we are doing this; * we are careful to avoid racing with them. */ while (count--) { if (_reports->get(rbuf)) { ret += sizeof(*rbuf); rbuf++; } } /* if there was no data, warn the caller */ return ret ? ret : -EAGAIN; } /* manual measurement - run one conversion */ do { _reports->flush(); /* trigger a measurement */ if (OK != measure()) { ret = -EIO; break; } /* wait for it to complete */ usleep(TRONE_CONVERSION_INTERVAL); /* run the collection phase */ if (OK != collect()) { ret = -EIO; break; } /* state machine will have generated a report, copy it out */ if (_reports->get(rbuf)) { ret = sizeof(*rbuf); } } while (0); return ret; } int TRONE::measure() { int ret; /* * Send the command to begin a measurement. */ const uint8_t cmd = TRONE_MEASURE_REG; ret = transfer(&cmd, sizeof(cmd), nullptr, 0); if (OK != ret) { perf_count(_comms_errors); log("i2c::transfer returned %d", ret); return ret; } ret = OK; return ret; } int TRONE::collect() { int ret = -EIO; /* read from the sensor */ uint8_t val[3] = {0, 0, 0}; perf_begin(_sample_perf); ret = transfer(nullptr, 0, &val[0], 3); if (ret < 0) { log("error reading from sensor: %d", ret); perf_count(_comms_errors); perf_end(_sample_perf); return ret; } uint16_t distance = (val[0] << 8) | val[1]; float si_units = distance * 0.001f; /* mm to m */ struct range_finder_report report; /* this should be fairly close to the end of the measurement, so the best approximation of the time */ report.timestamp = hrt_absolute_time(); report.error_count = perf_event_count(_comms_errors); report.distance = si_units; report.minimum_distance = get_minimum_distance(); report.maximum_distance = get_maximum_distance(); report.valid = crc8(val, 2) == val[2] && si_units > get_minimum_distance() && si_units < get_maximum_distance() ? 1 : 0; /* publish it, if we are the primary */ if (_range_finder_topic >= 0) { orb_publish(ORB_ID(sensor_range_finder), _range_finder_topic, &report); } if (_reports->force(&report)) { perf_count(_buffer_overflows); } /* notify anyone waiting for data */ poll_notify(POLLIN); ret = OK; perf_end(_sample_perf); return ret; } void TRONE::start() { /* reset the report ring and state machine */ _collect_phase = false; _reports->flush(); /* schedule a cycle to start things */ work_queue(HPWORK, &_work, (worker_t)&TRONE::cycle_trampoline, this, 1); /* notify about state change */ struct subsystem_info_s info = { true, true, true, SUBSYSTEM_TYPE_RANGEFINDER }; static orb_advert_t pub = -1; if (pub > 0) { orb_publish(ORB_ID(subsystem_info), pub, &info); } else { pub = orb_advertise(ORB_ID(subsystem_info), &info); } } void TRONE::stop() { work_cancel(HPWORK, &_work); } void TRONE::cycle_trampoline(void *arg) { TRONE *dev = (TRONE *)arg; dev->cycle(); } void TRONE::cycle() { /* collection phase? */ if (_collect_phase) { /* perform collection */ if (OK != collect()) { log("collection error"); /* restart the measurement state machine */ start(); return; } /* next phase is measurement */ _collect_phase = false; /* * Is there a collect->measure gap? */ if (_measure_ticks > USEC2TICK(TRONE_CONVERSION_INTERVAL)) { /* schedule a fresh cycle call when we are ready to measure again */ work_queue(HPWORK, &_work, (worker_t)&TRONE::cycle_trampoline, this, _measure_ticks - USEC2TICK(TRONE_CONVERSION_INTERVAL)); return; } } /* measurement phase */ if (OK != measure()) { log("measure error"); } /* next phase is collection */ _collect_phase = true; /* schedule a fresh cycle call when the measurement is done */ work_queue(HPWORK, &_work, (worker_t)&TRONE::cycle_trampoline, this, USEC2TICK(TRONE_CONVERSION_INTERVAL)); } void TRONE::print_info() { perf_print_counter(_sample_perf); perf_print_counter(_comms_errors); perf_print_counter(_buffer_overflows); printf("poll interval: %u ticks\n", _measure_ticks); _reports->print_info("report queue"); } /** * Local functions in support of the shell command. */ namespace trone { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif const int ERROR = -1; TRONE *g_dev; void start(); void stop(); void test(); void reset(); void info(); /** * Start the driver. */ void start() { int fd; if (g_dev != nullptr) { errx(1, "already started"); } /* create the driver */ g_dev = new TRONE(TRONE_BUS); if (g_dev == nullptr) { goto fail; } if (OK != g_dev->init()) { goto fail; } /* set the poll rate to default, starts automatic data collection */ fd = open(TRONE_DEVICE_PATH, O_RDONLY); if (fd < 0) { goto fail; } if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) { goto fail; } exit(0); fail: if (g_dev != nullptr) { delete g_dev; g_dev = nullptr; } errx(1, "driver start failed"); } /** * Stop the driver */ void stop() { if (g_dev != nullptr) { delete g_dev; g_dev = nullptr; } else { errx(1, "driver not running"); } exit(0); } /** * Perform some basic functional tests on the driver; * make sure we can collect data from the sensor in polled * and automatic modes. */ void test() { struct range_finder_report report; ssize_t sz; int ret; int fd = open(TRONE_DEVICE_PATH, O_RDONLY); if (fd < 0) { err(1, "%s open failed (try 'trone start' if the driver is not running", TRONE_DEVICE_PATH); } /* do a simple demand read */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { err(1, "immediate read failed"); } warnx("single read"); warnx("measurement: %0.2f m", (double)report.distance); warnx("time: %lld", report.timestamp); /* start the sensor polling at 2Hz */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) { errx(1, "failed to set 2Hz poll rate"); } /* read the sensor 50x and report each value */ for (unsigned i = 0; i < 50; i++) { struct pollfd fds; /* wait for data to be ready */ fds.fd = fd; fds.events = POLLIN; ret = poll(&fds, 1, 2000); if (ret != 1) { errx(1, "timed out waiting for sensor data"); } /* now go get it */ sz = read(fd, &report, sizeof(report)); if (sz != sizeof(report)) { err(1, "periodic read failed"); } warnx("periodic read %u", i); warnx("valid %u", report.valid); warnx("measurement: %0.3f", (double)report.distance); warnx("time: %lld", report.timestamp); } /* reset the sensor polling to default rate */ if (OK != ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT)) { errx(1, "failed to set default poll rate"); } errx(0, "PASS"); } /** * Reset the driver. */ void reset() { int fd = open(TRONE_DEVICE_PATH, O_RDONLY); if (fd < 0) { err(1, "failed "); } if (ioctl(fd, SENSORIOCRESET, 0) < 0) { err(1, "driver reset failed"); } if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) { err(1, "driver poll restart failed"); } exit(0); } /** * Print a little info about the driver. */ void info() { if (g_dev == nullptr) { errx(1, "driver not running"); } printf("state @ %p\n", g_dev); g_dev->print_info(); exit(0); } } // namespace int trone_main(int argc, char *argv[]) { /* * Start/load the driver. */ if (!strcmp(argv[1], "start")) { trone::start(); } /* * Stop the driver */ if (!strcmp(argv[1], "stop")) { trone::stop(); } /* * Test the driver/device. */ if (!strcmp(argv[1], "test")) { trone::test(); } /* * Reset the driver. */ if (!strcmp(argv[1], "reset")) { trone::reset(); } /* * Print driver information. */ if (!strcmp(argv[1], "info") || !strcmp(argv[1], "status")) { trone::info(); } errx(1, "unrecognized command, try 'start', 'test', 'reset' or 'info'"); }