/**************************************************************************** * * Copyright (c) 2013-2015 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file main.cpp * * Example implementation of a rover steering controller. * * @author Lorenz Meier */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* process-specific header files */ #include "params.h" /* Prototypes */ /** * Daemon management function. * * This function allows to start / stop the background task (daemon). * The purpose of it is to be able to start the controller on the * command line, query its status and stop it, without giving up * the command line to one particular process or the need for bg/fg * ^Z support by the shell. */ extern "C" __EXPORT int rover_steering_control_main(int argc, char *argv[]); struct params { float yaw_p; }; struct param_handles { param_t yaw_p; }; /** * Initialize all parameter handles and values * */ int parameters_init(struct param_handles *h); /** * Update all parameters * */ int parameters_update(const struct param_handles *h, struct params *p); /** * Mainloop of daemon. */ int rover_steering_control_thread_main(int argc, char *argv[]); /** * Print the correct usage. */ static void usage(const char *reason); /** * Control roll and pitch angle. * * This very simple roll and pitch controller takes the current roll angle * of the system and compares it to a reference. Pitch is controlled to zero and yaw remains * uncontrolled (tutorial code, not intended for flight). * * @param att_sp The current attitude setpoint - the values the system would like to reach. * @param att The current attitude. The controller should make the attitude match the setpoint */ void control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att, struct actuator_controls_s *actuators); /* Variables */ static bool thread_should_exit = false; /**< Daemon exit flag */ static bool thread_running = false; /**< Daemon status flag */ static int deamon_task; /**< Handle of deamon task / thread */ static struct params pp; static struct param_handles ph; int parameters_init(struct param_handles *h) { /* PID parameters */ h->yaw_p = param_find("RV_YAW_P"); return OK; } int parameters_update(const struct param_handles *h, struct params *p) { param_get(h->yaw_p, &(p->yaw_p)); return OK; } void control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att, struct actuator_controls_s *actuators) { /* * The PX4 architecture provides a mixer outside of the controller. * The mixer is fed with a default vector of actuator controls, representing * moments applied to the vehicle frame. This vector * is structured as: * * Control Group 0 (attitude): * * 0 - roll (-1..+1) * 1 - pitch (-1..+1) * 2 - yaw (-1..+1) * 3 - thrust ( 0..+1) * 4 - flaps (-1..+1) * ... * * Control Group 1 (payloads / special): * * ... */ /* set r/p zero */ actuators->control[0] = 0.0f; actuators->control[1] = 0.0f; /* * Calculate roll error and apply P gain */ float yaw_err = att->yaw - att_sp->yaw_body; actuators->control[2] = yaw_err * pp.yaw_p; /* copy throttle */ actuators->control[3] = att_sp->thrust; actuators->timestamp = hrt_absolute_time(); } /* Main Thread */ int rover_steering_control_thread_main(int argc, char *argv[]) { /* read arguments */ bool verbose = false; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) { verbose = true; } } /* initialize parameters, first the handles, then the values */ parameters_init(&ph); parameters_update(&ph, &pp); /* * PX4 uses a publish/subscribe design pattern to enable * multi-threaded communication. * * The most elegant aspect of this is that controllers and * other processes can either 'react' to new data, or run * at their own pace. * * PX4 developer guide: * https://pixhawk.ethz.ch/px4/dev/shared_object_communication * * Wikipedia description: * http://en.wikipedia.org/wiki/Publish–subscribe_pattern * */ /* * Declare and safely initialize all structs to zero. * * These structs contain the system state and things * like attitude, position, the current waypoint, etc. */ struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_attitude_setpoint_s att_sp; memset(&att_sp, 0, sizeof(att_sp)); struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); struct manual_control_setpoint_s manual_sp; memset(&manual_sp, 0, sizeof(manual_sp)); struct vehicle_status_s vstatus; memset(&vstatus, 0, sizeof(vstatus)); struct position_setpoint_s global_sp; memset(&global_sp, 0, sizeof(global_sp)); /* output structs - this is what is sent to the mixer */ struct actuator_controls_s actuators; memset(&actuators, 0, sizeof(actuators)); /* publish actuator controls with zero values */ for (unsigned i = 0; i < (sizeof(actuators.control) / sizeof(actuators.control[0])); i++) { actuators.control[i] = 0.0f; } struct vehicle_attitude_setpoint_s _att_sp = {}; /* * Advertise that this controller will publish actuator * control values and the rate setpoint */ orb_advert_t actuator_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &actuators); /* subscribe to topics. */ int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); int manual_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status)); int att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); int param_sub = orb_subscribe(ORB_ID(parameter_update)); /* Setup of loop */ struct pollfd fds[2]; fds[0].fd = param_sub; fds[0].events = POLLIN; fds[1].fd = att_sub; fds[1].events = POLLIN; while (!thread_should_exit) { /* * Wait for a sensor or param update, check for exit condition every 500 ms. * This means that the execution will block here without consuming any resources, * but will continue to execute the very moment a new attitude measurement or * a param update is published. So no latency in contrast to the polling * design pattern (do not confuse the poll() system call with polling). * * This design pattern makes the controller also agnostic of the attitude * update speed - it runs as fast as the attitude updates with minimal latency. */ int ret = poll(fds, 2, 500); if (ret < 0) { /* * Poll error, this will not really happen in practice, * but its good design practice to make output an error message. */ warnx("poll error"); } else if (ret == 0) { /* no return value = nothing changed for 500 ms, ignore */ } else { /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag (uORB API requirement) */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), param_sub, &update); /* if a param update occured, re-read our parameters */ parameters_update(&ph, &pp); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { /* Check if there is a new position measurement or position setpoint */ bool pos_updated; orb_check(global_pos_sub, &pos_updated); bool att_sp_updated; orb_check(att_sp_sub, &att_sp_updated); bool manual_sp_updated; orb_check(manual_sp_sub, &manual_sp_updated); /* get a local copy of attitude */ orb_copy(ORB_ID(vehicle_attitude), att_sub, &att); if (att_sp_updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, &_att_sp); } /* control attitude / heading */ control_attitude(&_att_sp, &att, &actuators); if (manual_sp_updated) /* get the RC (or otherwise user based) input */ { orb_copy(ORB_ID(manual_control_setpoint), manual_sp_sub, &manual_sp); } // XXX copy from manual depending on flight / usage mode to override /* get the system status and the flight mode we're in */ orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus); /* sanity check and publish actuator outputs */ if (isfinite(actuators.control[0]) && isfinite(actuators.control[1]) && isfinite(actuators.control[2]) && isfinite(actuators.control[3])) { orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators); if (verbose) { warnx("published"); } } } } } warnx("exiting, stopping all motors."); thread_running = false; /* kill all outputs */ for (unsigned i = 0; i < (sizeof(actuators.control) / sizeof(actuators.control[0])); i++) { actuators.control[i] = 0.0f; } actuators.timestamp = hrt_absolute_time(); orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators); fflush(stdout); return 0; } /* Startup Functions */ static void usage(const char *reason) { if (reason) { fprintf(stderr, "%s\n", reason); } fprintf(stderr, "usage: rover_steering_control {start|stop|status}\n\n"); exit(1); } /** * The daemon app only briefly exists to start * the background job. The stack size assigned in the * Makefile does only apply to this management task. * * The actual stack size should be set in the call * to task_spawn_cmd(). */ int rover_steering_control_main(int argc, char *argv[]) { if (argc < 2) { usage("missing command"); } if (!strcmp(argv[1], "start")) { if (thread_running) { warnx("running"); /* this is not an error */ exit(0); } thread_should_exit = false; deamon_task = task_spawn_cmd("rover_steering_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 20, 2048, rover_steering_control_thread_main, (argv) ? (char * const *)&argv[2] : (char * const *)NULL); thread_running = true; exit(0); } if (!strcmp(argv[1], "stop")) { thread_should_exit = true; exit(0); } if (!strcmp(argv[1], "status")) { if (thread_running) { warnx("running"); } else { warnx("not started"); } exit(0); } usage("unrecognized command"); exit(1); }