/**************************************************************************** * * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ecl_pitch_controller.cpp * Implementation of a simple orthogonal pitch PID controller. * * Authors and acknowledgements in header. */ #include "ecl_pitch_controller.h" #include #include #include #include #include #include #include ECL_PitchController::ECL_PitchController() : _last_run(0), _tc(0.1f), _k_p(0.0f), _k_i(0.0f), _k_ff(0.0f), _integrator_max(0.0f), _max_rate_pos(0.0f), _max_rate_neg(0.0f), _roll_ff(0.0f), _last_output(0.0f), _integrator(0.0f), _rate_error(0.0f), _rate_setpoint(0.0f), _bodyrate_setpoint(0.0f) { } float ECL_PitchController::control_attitude(float pitch_setpoint, float roll, float pitch, float airspeed) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(pitch_setpoint) && isfinite(roll) && isfinite(pitch) && isfinite(airspeed))) { warnx("not controlling pitch"); return _rate_setpoint; } /* flying inverted (wings upside down) ? */ bool inverted = false; /* roll is used as feedforward term and inverted flight needs to be considered */ if (fabsf(roll) < math::radians(90.0f)) { /* not inverted, but numerically still potentially close to infinity */ roll = math::constrain(roll, math::radians(-80.0f), math::radians(80.0f)); } else { /* inverted flight, constrain on the two extremes of -pi..+pi to avoid infinity */ /* note: the ranges are extended by 10 deg here to avoid numeric resolution effects */ if (roll > 0.0f) { /* right hemisphere */ roll = math::constrain(roll, math::radians(100.0f), math::radians(180.0f)); } else { /* left hemisphere */ roll = math::constrain(roll, math::radians(-100.0f), math::radians(-180.0f)); } } /* calculate the offset in the rate resulting from rolling */ //xxx needs explanation and conversion to body angular rates or should be removed float turn_offset = fabsf((CONSTANTS_ONE_G / airspeed) * tanf(roll) * sinf(roll)) * _roll_ff; if (inverted) turn_offset = -turn_offset; /* Calculate the error */ float pitch_error = pitch_setpoint - pitch; /* Apply P controller: rate setpoint from current error and time constant */ _rate_setpoint = pitch_error / _tc; /* add turn offset */ _rate_setpoint += turn_offset; /* limit the rate */ //XXX: move to body angluar rates if (_max_rate_pos > 0.01f && _max_rate_neg > 0.01f) { if (_rate_setpoint > 0.0f) { _rate_setpoint = (_rate_setpoint > _max_rate_pos) ? _max_rate_pos : _rate_setpoint; } else { _rate_setpoint = (_rate_setpoint < -_max_rate_neg) ? -_max_rate_neg : _rate_setpoint; } } return _rate_setpoint; } float ECL_PitchController::control_bodyrate(float roll, float pitch, float pitch_rate, float yaw_rate, float yaw_rate_setpoint, float airspeed_min, float airspeed_max, float airspeed, float scaler, bool lock_integrator) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(roll) && isfinite(pitch) && isfinite(pitch_rate) && isfinite(yaw_rate) && isfinite(yaw_rate_setpoint) && isfinite(airspeed_min) && isfinite(airspeed_max) && isfinite(scaler))) { return math::constrain(_last_output, -1.0f, 1.0f); } /* get the usual dt estimate */ uint64_t dt_micros = ecl_elapsed_time(&_last_run); _last_run = ecl_absolute_time(); float dt = (float)dt_micros * 1e-6f; /* lock integral for long intervals */ if (dt_micros > 500000) lock_integrator = true; // float k_ff = math::max((_k_p - _k_i * _tc) * _tc - _k_d, 0.0f); float k_ff = 0; /* input conditioning */ if (!isfinite(airspeed)) { /* airspeed is NaN, +- INF or not available, pick center of band */ airspeed = 0.5f * (airspeed_min + airspeed_max); } else if (airspeed < airspeed_min) { airspeed = airspeed_min; } /* Transform setpoint to body angular rates */ _bodyrate_setpoint = cosf(roll) * _rate_setpoint + cosf(pitch) * sinf(roll) * yaw_rate_setpoint; //jacobian /* Transform estimation to body angular rates */ float pitch_bodyrate = cosf(roll) * pitch_rate + cosf(pitch) * sinf(roll) * yaw_rate; //jacobian _rate_error = _bodyrate_setpoint - pitch_bodyrate; if (!lock_integrator && _k_i > 0.0f && airspeed > 0.5f * airspeed_min) { float id = _rate_error * dt; /* * anti-windup: do not allow integrator to increase if actuator is at limit */ if (_last_output < -1.0f) { /* only allow motion to center: increase value */ id = math::max(id, 0.0f); } else if (_last_output > 1.0f) { /* only allow motion to center: decrease value */ id = math::min(id, 0.0f); } _integrator += id; } /* integrator limit */ //xxx: until start detection is available: integral part in control signal is limited here float integrator_constrained = math::constrain(_integrator * _k_i, -_integrator_max, _integrator_max); /* Apply PI rate controller and store non-limited output */ _last_output = (_bodyrate_setpoint * _k_ff +_rate_error * _k_p + integrator_constrained) * scaler * scaler; //scaler is proportional to 1/airspeed // warnx("pitch: _integrator: %.4f, _integrator_max: %.4f, airspeed %.4f, _k_i %.4f, _k_p: %.4f", (double)_integrator, (double)_integrator_max, (double)airspeed, (double)_k_i, (double)_k_p); // warnx("roll: _last_output %.4f", (double)_last_output); return math::constrain(_last_output, -1.0f, 1.0f); } void ECL_PitchController::reset_integrator() { _integrator = 0.0f; }