/**************************************************************************** * * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ecl_roll_controller.cpp * Implementation of a simple orthogonal roll PID controller. * * Authors and acknowledgements in header. */ #include "../ecl.h" #include "ecl_roll_controller.h" #include #include #include #include #include #include ECL_RollController::ECL_RollController() : ECL_Controller("roll") { } ECL_RollController::~ECL_RollController() { } float ECL_RollController::control_attitude(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(ctl_data.roll_setpoint) && isfinite(ctl_data.roll))) { perf_count(_nonfinite_input_perf); return _rate_setpoint; } /* Calculate error */ float roll_error = ctl_data.roll_setpoint - ctl_data.roll; /* Apply P controller */ _rate_setpoint = roll_error / _tc; /* limit the rate */ //XXX: move to body angluar rates if (_max_rate > 0.01f) { _rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint; _rate_setpoint = (_rate_setpoint < -_max_rate) ? -_max_rate : _rate_setpoint; } return _rate_setpoint; } float ECL_RollController::control_bodyrate(const struct ECL_ControlData &ctl_data) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(ctl_data.pitch) && isfinite(ctl_data.roll_rate) && isfinite(ctl_data.yaw_rate) && isfinite(ctl_data.yaw_rate_setpoint) && isfinite(ctl_data.airspeed_min) && isfinite(ctl_data.airspeed_max) && isfinite(ctl_data.scaler))) { perf_count(_nonfinite_input_perf); return math::constrain(_last_output, -1.0f, 1.0f); } /* get the usual dt estimate */ uint64_t dt_micros = ecl_elapsed_time(&_last_run); _last_run = ecl_absolute_time(); float dt = (float)dt_micros * 1e-6f; /* lock integral for long intervals */ bool lock_integrator = ctl_data.lock_integrator; if (dt_micros > 500000) lock_integrator = true; /* input conditioning */ float airspeed = ctl_data.airspeed; if (!isfinite(airspeed)) { /* airspeed is NaN, +- INF or not available, pick center of band */ airspeed = 0.5f * (ctl_data.airspeed_min + ctl_data.airspeed_max); } else if (airspeed < ctl_data.airspeed_min) { airspeed = ctl_data.airspeed_min; } /* Transform setpoint to body angular rates (jacobian) */ _bodyrate_setpoint = _rate_setpoint - sinf(ctl_data.pitch) * ctl_data.yaw_rate_setpoint; /* Transform estimation to body angular rates (jacobian) */ float roll_bodyrate = ctl_data.roll_rate - sinf(ctl_data.pitch) * ctl_data.yaw_rate; /* Calculate body angular rate error */ _rate_error = _bodyrate_setpoint - roll_bodyrate; //body angular rate error if (!lock_integrator && _k_i > 0.0f && airspeed > 0.5f * ctl_data.airspeed_min) { float id = _rate_error * dt * ctl_data.scaler; /* * anti-windup: do not allow integrator to increase if actuator is at limit */ if (_last_output < -1.0f) { /* only allow motion to center: increase value */ id = math::max(id, 0.0f); } else if (_last_output > 1.0f) { /* only allow motion to center: decrease value */ id = math::min(id, 0.0f); } _integrator += id; } /* integrator limit */ //xxx: until start detection is available: integral part in control signal is limited here float integrator_constrained = math::constrain(_integrator * _k_i, -_integrator_max, _integrator_max); //warnx("roll: _integrator: %.4f, _integrator_max: %.4f", (double)_integrator, (double)_integrator_max); /* Apply PI rate controller and store non-limited output */ _last_output = _bodyrate_setpoint * _k_ff * ctl_data.scaler + _rate_error * _k_p * ctl_data.scaler * ctl_data.scaler + integrator_constrained; //scaler is proportional to 1/airspeed return math::constrain(_last_output, -1.0f, 1.0f); }