/**************************************************************************** * * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ecl_roll_controller.cpp * Implementation of a simple orthogonal roll PID controller. * * Authors and acknowledgements in header. */ #include "../ecl.h" #include "ecl_roll_controller.h" #include #include #include #include #include #include ECL_RollController::ECL_RollController() : _last_run(0), _tc(0.1f), _k_p(0.0f), _k_i(0.0f), _k_ff(0.0f), _integrator_max(0.0f), _max_rate(0.0f), _last_output(0.0f), _integrator(0.0f), _rate_error(0.0f), _rate_setpoint(0.0f), _bodyrate_setpoint(0.0f) { } float ECL_RollController::control_attitude(float roll_setpoint, float roll) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(roll_setpoint) && isfinite(roll))) { return _rate_setpoint; } /* Calculate error */ float roll_error = roll_setpoint - roll; /* Apply P controller */ _rate_setpoint = roll_error / _tc; /* limit the rate */ //XXX: move to body angluar rates if (_max_rate > 0.01f) { _rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint; _rate_setpoint = (_rate_setpoint < -_max_rate) ? -_max_rate : _rate_setpoint; } return _rate_setpoint; } float ECL_RollController::control_bodyrate(float pitch, float roll_rate, float yaw_rate, float yaw_rate_setpoint, float airspeed_min, float airspeed_max, float airspeed, float scaler, bool lock_integrator) { /* Do not calculate control signal with bad inputs */ if (!(isfinite(pitch) && isfinite(roll_rate) && isfinite(yaw_rate) && isfinite(yaw_rate_setpoint) && isfinite(airspeed_min) && isfinite(airspeed_max) && isfinite(scaler))) { return math::constrain(_last_output, -1.0f, 1.0f); } /* get the usual dt estimate */ uint64_t dt_micros = ecl_elapsed_time(&_last_run); _last_run = ecl_absolute_time(); float dt = (float)dt_micros * 1e-6f; /* lock integral for long intervals */ if (dt_micros > 500000) lock_integrator = true; // float k_ff = math::max((_k_p - _k_i * _tc) * _tc - _k_d, 0.0f); float k_ff = 0; //xxx: param /* input conditioning */ // warnx("airspeed pre %.4f", (double)airspeed); if (!isfinite(airspeed)) { /* airspeed is NaN, +- INF or not available, pick center of band */ airspeed = 0.5f * (airspeed_min + airspeed_max); } else if (airspeed < airspeed_min) { airspeed = airspeed_min; } /* Transform setpoint to body angular rates */ _bodyrate_setpoint = _rate_setpoint - sinf(pitch) * yaw_rate_setpoint; //jacobian /* Transform estimation to body angular rates */ float roll_bodyrate = roll_rate - sinf(pitch) * yaw_rate; //jacobian /* Calculate body angular rate error */ _rate_error = _bodyrate_setpoint - roll_bodyrate; //body angular rate error if (!lock_integrator && _k_i > 0.0f && airspeed > 0.5f * airspeed_min) { float id = _rate_error * dt; /* * anti-windup: do not allow integrator to increase if actuator is at limit */ if (_last_output < -1.0f) { /* only allow motion to center: increase value */ id = math::max(id, 0.0f); } else if (_last_output > 1.0f) { /* only allow motion to center: decrease value */ id = math::min(id, 0.0f); } _integrator += id; } /* integrator limit */ //xxx: until start detection is available: integral part in control signal is limited here float integrator_constrained = math::constrain(_integrator * _k_i, -_integrator_max, _integrator_max); //warnx("roll: _integrator: %.4f, _integrator_max: %.4f", (double)_integrator, (double)_integrator_max); /* Apply PI rate controller and store non-limited output */ _last_output = (_bodyrate_setpoint * _k_ff + _rate_error * _k_p + integrator_constrained) * scaler * scaler; //scaler is proportional to 1/airspeed return math::constrain(_last_output, -1.0f, 1.0f); } void ECL_RollController::reset_integrator() { _integrator = 0.0f; }