/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: Thomas Gubler * Julian Oes * Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo.c * * Geo / math functions to perform geodesic calculations * * @author Thomas Gubler * @author Julian Oes * @author Lorenz Meier */ #include #include #include #include #include #include #include /* values for map projection */ static double phi_1; static double sin_phi_1; static double cos_phi_1; static double lambda_0; static double scale; __EXPORT void map_projection_init(double lat_0, double lon_0) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 { /* notation and formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ phi_1 = lat_0 / 180.0 * M_PI; lambda_0 = lon_0 / 180.0 * M_PI; sin_phi_1 = sin(phi_1); cos_phi_1 = cos(phi_1); /* calculate local scale by using the relation of true distance and the distance on plane */ //TODO: this is a quick solution, there are probably easier ways to determine the scale /* 1) calculate true distance d on sphere to a point: http://www.movable-type.co.uk/scripts/latlong.html */ double lat1 = phi_1; double lon1 = lambda_0; double lat2 = phi_1 + 0.5 / 180 * M_PI; double lon2 = lambda_0 + 0.5 / 180 * M_PI; double sin_lat_2 = sin(lat2); double cos_lat_2 = cos(lat2); double d = acos(sin(lat1) * sin_lat_2 + cos(lat1) * cos_lat_2 * cos(lon2 - lon1)) * CONSTANTS_RADIUS_OF_EARTH; /* 2) calculate distance rho on plane */ double k_bar = 0; double c = acos(sin_phi_1 * sin_lat_2 + cos_phi_1 * cos_lat_2 * cos(lon2 - lambda_0)); if (0 != c) k_bar = c / sin(c); double x2 = k_bar * (cos_lat_2 * sin(lon2 - lambda_0)); //Projection of point 2 on plane double y2 = k_bar * ((cos_phi_1 * sin_lat_2 - sin_phi_1 * cos_lat_2 * cos(lon2 - lambda_0))); double rho = sqrt(pow(x2, 2) + pow(y2, 2)); scale = d / rho; } __EXPORT void map_projection_project(double lat, double lon, float *x, float *y) { /* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ double phi = lat / 180.0 * M_PI; double lambda = lon / 180.0 * M_PI; double sin_phi = sin(phi); double cos_phi = cos(phi); double k_bar = 0; /* using small angle approximation (formula in comment is without aproximation) */ double c = acos(sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2)); //double c = acos( sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * cos(lambda - lambda_0) ); if (0 != c) k_bar = c / sin(c); /* using small angle approximation (formula in comment is without aproximation) */ *y = k_bar * (cos_phi * (lambda - lambda_0)) * scale;//*y = k_bar * (cos_phi * sin(lambda - lambda_0)) * scale; *x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2))) * scale; // *x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * cos(lambda - lambda_0))) * scale; // printf("%phi_1=%.10f, lambda_0 =%.10f\n", phi_1, lambda_0); } __EXPORT void map_projection_reproject(float x, float y, double *lat, double *lon) { /* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ double x_descaled = x / scale; double y_descaled = y / scale; double c = sqrt(pow(x_descaled, 2) + pow(y_descaled, 2)); double sin_c = sin(c); double cos_c = cos(c); double lat_sphere = 0; if (c != 0) lat_sphere = asin(cos_c * sin_phi_1 + (x_descaled * sin_c * cos_phi_1) / c); else lat_sphere = asin(cos_c * sin_phi_1); // printf("lat_sphere = %.10f\n",lat_sphere); double lon_sphere = 0; if (phi_1 == M_PI / 2) { //using small angle approximation (formula in comment is without aproximation) lon_sphere = (lambda_0 - y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(-y_descaled, x_descaled)); } else if (phi_1 == -M_PI / 2) { //using small angle approximation (formula in comment is without aproximation) lon_sphere = (lambda_0 + y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(y_descaled, x_descaled)); } else { lon_sphere = (lambda_0 + atan2(y_descaled * sin_c , c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c)); //using small angle approximation // double denominator = (c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c); // if(denominator != 0) // { // lon_sphere = (lambda_0 + (y_descaled * sin_c) / denominator); // } // else // { // ... // } } // printf("lon_sphere = %.10f\n",lon_sphere); *lat = lat_sphere * 180.0 / M_PI; *lon = lon_sphere * 180.0 / M_PI; } __EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { double lat_now_rad = lat_now / 180.0d * M_PI; double lon_now_rad = lon_now / 180.0d * M_PI; double lat_next_rad = lat_next / 180.0d * M_PI; double lon_next_rad = lon_next / 180.0d * M_PI; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; double a = sin(d_lat / 2.0d) * sin(d_lat / 2.0d) + sin(d_lon / 2.0d) * sin(d_lon / 2.0d) * cos(lat_now_rad) * cos(lat_next_rad); double c = 2.0d * atan2(sqrt(a), sqrt(1.0d - a)); return CONSTANTS_RADIUS_OF_EARTH * c; } __EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); theta = _wrap_pi(theta); return theta; } __EXPORT void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float* v_n, float* v_e) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); *v_e = CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad); } __EXPORT void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float* v_n, float* v_e) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; double lat_next_rad = lat_next * M_DEG_TO_RAD; double lon_next_rad = lon_next * M_DEG_TO_RAD; double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = CONSTANTS_RADIUS_OF_EARTH * d_lat; *v_e = CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad); } __EXPORT void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res) { double lat_now_rad = lat_now * M_DEG_TO_RAD; double lon_now_rad = lon_now * M_DEG_TO_RAD; *lat_res = (lat_now_rad + v_n / CONSTANTS_RADIUS_OF_EARTH) * M_RAD_TO_DEG; *lon_res = (lon_now_rad + v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad))) * M_RAD_TO_DEG; } // Additional functions - @author Doug Weibel __EXPORT int get_distance_to_line(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end) { // This function returns the distance to the nearest point on the track line. Distance is positive if current // position is right of the track and negative if left of the track as seen from a point on the track line // headed towards the end point. float dist_to_end; float bearing_end; float bearing_track; float bearing_diff; int return_value = ERROR; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; // Return error if arguments are bad if (lat_now == 0.0d || lon_now == 0.0d || lat_start == 0.0d || lon_start == 0.0d || lat_end == 0.0d || lon_end == 0.0d) return return_value; bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end); bearing_diff = bearing_track - bearing_end; bearing_diff = _wrap_pi(bearing_diff); // Return past_end = true if past end point of line if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) { crosstrack_error->past_end = true; return_value = OK; return return_value; } dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); crosstrack_error->distance = (dist_to_end) * sin(bearing_diff); if (sin(bearing_diff) >= 0) { crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F); } else { crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F); } return_value = OK; return return_value; } __EXPORT int get_distance_to_arc(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center, float radius, float arc_start_bearing, float arc_sweep) { // This function returns the distance to the nearest point on the track arc. Distance is positive if current // position is right of the arc and negative if left of the arc as seen from the closest point on the arc and // headed towards the end point. // Determine if the current position is inside or outside the sector between the line from the center // to the arc start and the line from the center to the arc end float bearing_sector_start; float bearing_sector_end; float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); bool in_sector; int return_value = ERROR; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; // Return error if arguments are bad if (lat_now == 0.0d || lon_now == 0.0d || lat_center == 0.0d || lon_center == 0.0d || radius == 0.0d) return return_value; if (arc_sweep >= 0) { bearing_sector_start = arc_start_bearing; bearing_sector_end = arc_start_bearing + arc_sweep; if (bearing_sector_end > 2.0f * M_PI_F) bearing_sector_end -= M_TWOPI_F; } else { bearing_sector_end = arc_start_bearing; bearing_sector_start = arc_start_bearing - arc_sweep; if (bearing_sector_start < 0.0f) bearing_sector_start += M_TWOPI_F; } in_sector = false; // Case where sector does not span zero if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) in_sector = true; // Case where sector does span zero if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) in_sector = true; // If in the sector then calculate distance and bearing to closest point if (in_sector) { crosstrack_error->past_end = false; float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); if (dist_to_center <= radius) { crosstrack_error->distance = radius - dist_to_center; crosstrack_error->bearing = bearing_now + M_PI_F; } else { crosstrack_error->distance = dist_to_center - radius; crosstrack_error->bearing = bearing_now; } // If out of the sector then calculate dist and bearing to start or end point } else { // Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude) // and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to // calculate the position of the start and end points. We should not be doing this often // as this function generally will not be called repeatedly when we are out of the sector. // TO DO - this is messed up and won't compile float start_disp_x = radius * sin(arc_start_bearing); float start_disp_y = radius * cos(arc_start_bearing); float end_disp_x = radius * sin(_wrapPI(arc_start_bearing + arc_sweep)); float end_disp_y = radius * cos(_wrapPI(arc_start_bearing + arc_sweep)); float lon_start = lon_now + start_disp_x / 111111.0d; float lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0d; float lon_end = lon_now + end_disp_x / 111111.0d; float lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0d; float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); if (dist_to_start < dist_to_end) { crosstrack_error->distance = dist_to_start; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); } else { crosstrack_error->past_end = true; crosstrack_error->distance = dist_to_end; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); } } crosstrack_error->bearing = _wrapPI(crosstrack_error->bearing); return_value = OK; return return_value; } __EXPORT float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, double lat_next, double lon_next, float alt_next, float *dist_xy, float *dist_z) { double current_x_rad = lat_next / 180.0 * M_PI; double current_y_rad = lon_next / 180.0 * M_PI; double x_rad = lat_now / 180.0 * M_PI; double y_rad = lon_now / 180.0 * M_PI; double d_lat = x_rad - current_x_rad; double d_lon = y_rad - current_y_rad; double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0f) * cos(current_x_rad) * cos(x_rad); double c = 2 * atan2(sqrt(a), sqrt(1 - a)); float dxy = CONSTANTS_RADIUS_OF_EARTH * c; float dz = alt_now - alt_next; *dist_xy = fabsf(dxy); *dist_z = fabsf(dz); return sqrtf(dxy * dxy + dz * dz); } __EXPORT float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, float x_next, float y_next, float z_next, float *dist_xy, float *dist_z) { float dx = x_now - x_next; float dy = y_now - y_next; float dz = z_now - z_next; *dist_xy = sqrtf(dx * dx + dy * dy); *dist_z = fabsf(dz); return sqrtf(dx * dx + dy * dy + dz * dz); } __EXPORT float _wrap_pi(float bearing) { /* value is inf or NaN */ if (!isfinite(bearing) || bearing == 0) { return bearing; } int c = 0; while (bearing > M_PI_F && c < 30) { bearing -= M_TWOPI_F; c++; } c = 0; while (bearing <= -M_PI_F && c < 30) { bearing += M_TWOPI_F; c++; } return bearing; } __EXPORT float _wrap_2pi(float bearing) { /* value is inf or NaN */ if (!isfinite(bearing)) { return bearing; } while (bearing >= M_TWOPI_F) { bearing = bearing - M_TWOPI_F; } while (bearing < 0.0f) { bearing = bearing + M_TWOPI_F; } return bearing; } __EXPORT float _wrap_180(float bearing) { /* value is inf or NaN */ if (!isfinite(bearing)) { return bearing; } while (bearing > 180.0f) { bearing = bearing - 360.0f; } while (bearing <= -180.0f) { bearing = bearing + 360.0f; } return bearing; } __EXPORT float _wrap_360(float bearing) { /* value is inf or NaN */ if (!isfinite(bearing)) { return bearing; } while (bearing >= 360.0f) { bearing = bearing - 360.0f; } while (bearing < 0.0f) { bearing = bearing + 360.0f; } return bearing; }