/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file Dcm.cpp * * math direction cosine matrix */ #include #include "Dcm.hpp" #include "Quaternion.hpp" #include "EulerAngles.hpp" #include "Vector3.hpp" namespace math { Dcm::Dcm() : Matrix(Matrix::identity(3)) { } Dcm::Dcm(float c00, float c01, float c02, float c10, float c11, float c12, float c20, float c21, float c22) : Matrix(3, 3) { Dcm &dcm = *this; dcm(0, 0) = c00; dcm(0, 1) = c01; dcm(0, 2) = c02; dcm(1, 0) = c10; dcm(1, 1) = c11; dcm(1, 2) = c12; dcm(2, 0) = c20; dcm(2, 1) = c21; dcm(2, 2) = c22; } Dcm::Dcm(const float data[3][3]) : Matrix(3, 3) { Dcm &dcm = *this; /* set rotation matrix */ for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) dcm(i, j) = data[i][j]; } Dcm::Dcm(const float *data) : Matrix(3, 3, data) { } Dcm::Dcm(const Quaternion &q) : Matrix(3, 3) { Dcm &dcm = *this; double a = q.getA(); double b = q.getB(); double c = q.getC(); double d = q.getD(); double aSq = a * a; double bSq = b * b; double cSq = c * c; double dSq = d * d; dcm(0, 0) = aSq + bSq - cSq - dSq; dcm(0, 1) = 2.0 * (b * c - a * d); dcm(0, 2) = 2.0 * (a * c + b * d); dcm(1, 0) = 2.0 * (b * c + a * d); dcm(1, 1) = aSq - bSq + cSq - dSq; dcm(1, 2) = 2.0 * (c * d - a * b); dcm(2, 0) = 2.0 * (b * d - a * c); dcm(2, 1) = 2.0 * (a * b + c * d); dcm(2, 2) = aSq - bSq - cSq + dSq; } Dcm::Dcm(const EulerAngles &euler) : Matrix(3, 3) { Dcm &dcm = *this; double cosPhi = cos(euler.getPhi()); double sinPhi = sin(euler.getPhi()); double cosThe = cos(euler.getTheta()); double sinThe = sin(euler.getTheta()); double cosPsi = cos(euler.getPsi()); double sinPsi = sin(euler.getPsi()); dcm(0, 0) = cosThe * cosPsi; dcm(0, 1) = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi; dcm(0, 2) = sinPhi * sinPsi + cosPhi * sinThe * cosPsi; dcm(1, 0) = cosThe * sinPsi; dcm(1, 1) = cosPhi * cosPsi + sinPhi * sinThe * sinPsi; dcm(1, 2) = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi; dcm(2, 0) = -sinThe; dcm(2, 1) = sinPhi * cosThe; dcm(2, 2) = cosPhi * cosThe; } Dcm::Dcm(const Dcm &right) : Matrix(right) { } Dcm::~Dcm() { } int __EXPORT dcmTest() { printf("Test DCM\t\t: "); // default ctor ASSERT(matrixEqual(Dcm(), Matrix::identity(3))); // quaternion ctor ASSERT(matrixEqual( Dcm(Quaternion(0.983347f, 0.034271f, 0.106021f, 0.143572f)), Dcm(0.9362934f, -0.2750958f, 0.2183507f, 0.2896295f, 0.9564251f, -0.0369570f, -0.1986693f, 0.0978434f, 0.9751703f))); // euler angle ctor ASSERT(matrixEqual( Dcm(EulerAngles(0.1f, 0.2f, 0.3f)), Dcm(0.9362934f, -0.2750958f, 0.2183507f, 0.2896295f, 0.9564251f, -0.0369570f, -0.1986693f, 0.0978434f, 0.9751703f))); // rotations Vector3 vB(1, 2, 3); ASSERT(vectorEqual(Vector3(-2.0f, 1.0f, 3.0f), Dcm(EulerAngles(0.0f, 0.0f, M_PI_2_F))*vB)); ASSERT(vectorEqual(Vector3(3.0f, 2.0f, -1.0f), Dcm(EulerAngles(0.0f, M_PI_2_F, 0.0f))*vB)); ASSERT(vectorEqual(Vector3(1.0f, -3.0f, 2.0f), Dcm(EulerAngles(M_PI_2_F, 0.0f, 0.0f))*vB)); ASSERT(vectorEqual(Vector3(3.0f, 2.0f, -1.0f), Dcm(EulerAngles( M_PI_2_F, M_PI_2_F, M_PI_2_F))*vB)); printf("PASS\n"); return 0; } } // namespace math