/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file Matrix.h * * matrix code */ #pragma once #include #include #include #include #include #include #include "../Vector.hpp" #include "../Matrix.hpp" // arm specific #include "../../CMSIS/Include/arm_math.h" namespace math { class __EXPORT Matrix { public: // constructor Matrix(size_t rows, size_t cols) : _matrix() { arm_mat_init_f32(&_matrix, rows, cols, (float *)calloc(rows * cols, sizeof(float))); } Matrix(size_t rows, size_t cols, const float *data) : _matrix() { arm_mat_init_f32(&_matrix, rows, cols, (float *)malloc(rows * cols * sizeof(float))); memcpy(getData(), data, getSize()); } // deconstructor virtual ~Matrix() { delete [] _matrix.pData; } // copy constructor (deep) Matrix(const Matrix &right) : _matrix() { arm_mat_init_f32(&_matrix, right.getRows(), right.getCols(), (float *)malloc(right.getRows()* right.getCols()*sizeof(float))); memcpy(getData(), right.getData(), getSize()); } // assignment inline Matrix &operator=(const Matrix &right) { #ifdef MATRIX_ASSERT ASSERT(getRows() == right.getRows()); ASSERT(getCols() == right.getCols()); #endif if (this != &right) { memcpy(getData(), right.getData(), right.getSize()); } return *this; } // element accessors inline float &operator()(size_t i, size_t j) { #ifdef MATRIX_ASSERT ASSERT(i < getRows()); ASSERT(j < getCols()); #endif return getData()[i * getCols() + j]; } inline const float &operator()(size_t i, size_t j) const { #ifdef MATRIX_ASSERT ASSERT(i < getRows()); ASSERT(j < getCols()); #endif return getData()[i * getCols() + j]; } // output inline void print() const { for (size_t i = 0; i < getRows(); i++) { for (size_t j = 0; j < getCols(); j++) { float sig; int exponent; float num = (*this)(i, j); float2SigExp(num, sig, exponent); printf("%6.3fe%03d ", (double)sig, exponent); } printf("\n"); } } // boolean ops inline bool operator==(const Matrix &right) const { for (size_t i = 0; i < getRows(); i++) { for (size_t j = 0; j < getCols(); j++) { if (fabsf((*this)(i, j) - right(i, j)) > 1e-30f) return false; } } return true; } // scalar ops inline Matrix operator+(float right) const { Matrix result(getRows(), getCols()); arm_offset_f32((float *)getData(), right, (float *)result.getData(), getRows()*getCols()); return result; } inline Matrix operator-(float right) const { Matrix result(getRows(), getCols()); arm_offset_f32((float *)getData(), -right, (float *)result.getData(), getRows()*getCols()); return result; } inline Matrix operator*(float right) const { Matrix result(getRows(), getCols()); arm_mat_scale_f32(&_matrix, right, &(result._matrix)); return result; } inline Matrix operator/(float right) const { Matrix result(getRows(), getCols()); arm_mat_scale_f32(&_matrix, 1.0f / right, &(result._matrix)); return result; } // vector ops inline Vector operator*(const Vector &right) const { #ifdef MATRIX_ASSERT ASSERT(getCols() == right.getRows()); #endif Matrix resultMat = (*this) * Matrix(right.getRows(), 1, right.getData()); return Vector(getRows(), resultMat.getData()); } // matrix ops inline Matrix operator+(const Matrix &right) const { #ifdef MATRIX_ASSERT ASSERT(getRows() == right.getRows()); ASSERT(getCols() == right.getCols()); #endif Matrix result(getRows(), getCols()); arm_mat_add_f32(&_matrix, &(right._matrix), &(result._matrix)); return result; } inline Matrix operator-(const Matrix &right) const { #ifdef MATRIX_ASSERT ASSERT(getRows() == right.getRows()); ASSERT(getCols() == right.getCols()); #endif Matrix result(getRows(), getCols()); arm_mat_sub_f32(&_matrix, &(right._matrix), &(result._matrix)); return result; } inline Matrix operator*(const Matrix &right) const { #ifdef MATRIX_ASSERT ASSERT(getCols() == right.getRows()); #endif Matrix result(getRows(), right.getCols()); arm_mat_mult_f32(&_matrix, &(right._matrix), &(result._matrix)); return result; } inline Matrix operator/(const Matrix &right) const { #ifdef MATRIX_ASSERT ASSERT(right.getRows() == right.getCols()); ASSERT(getCols() == right.getCols()); #endif return (*this) * right.inverse(); } // other functions inline Matrix transpose() const { Matrix result(getCols(), getRows()); arm_mat_trans_f32(&_matrix, &(result._matrix)); return result; } inline void swapRows(size_t a, size_t b) { if (a == b) return; for (size_t j = 0; j < getCols(); j++) { float tmp = (*this)(a, j); (*this)(a, j) = (*this)(b, j); (*this)(b, j) = tmp; } } inline void swapCols(size_t a, size_t b) { if (a == b) return; for (size_t i = 0; i < getRows(); i++) { float tmp = (*this)(i, a); (*this)(i, a) = (*this)(i, b); (*this)(i, b) = tmp; } } /** * inverse based on LU factorization with partial pivotting */ Matrix inverse() const { #ifdef MATRIX_ASSERT ASSERT(getRows() == getCols()); #endif Matrix result(getRows(), getCols()); Matrix work = (*this); arm_mat_inverse_f32(&(work._matrix), &(result._matrix)); return result; } inline void setAll(const float &val) { for (size_t i = 0; i < getRows(); i++) { for (size_t j = 0; j < getCols(); j++) { (*this)(i, j) = val; } } } inline void set(const float *data) { memcpy(getData(), data, getSize()); } inline size_t getRows() const { return _matrix.numRows; } inline size_t getCols() const { return _matrix.numCols; } inline static Matrix identity(size_t size) { Matrix result(size, size); for (size_t i = 0; i < size; i++) { result(i, i) = 1.0f; } return result; } inline static Matrix zero(size_t size) { Matrix result(size, size); result.setAll(0.0f); return result; } inline static Matrix zero(size_t m, size_t n) { Matrix result(m, n); result.setAll(0.0f); return result; } protected: inline size_t getSize() const { return sizeof(float) * getRows() * getCols(); } inline float *getData() { return _matrix.pData; } inline const float *getData() const { return _matrix.pData; } inline void setData(float *data) { _matrix.pData = data; } private: arm_matrix_instance_f32 _matrix; }; } // namespace math