/**************************************************************************** * * Copyright (C) 2013 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file state_machine_helper.cpp * State machine helper functions implementations * * @author Thomas Gubler * @author Julian Oes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "state_machine_helper.h" #include "commander_helper.h" // This array defines the arming state transitions. The rows are the new state, and the columns // are the current state. Using new state and current state you can index into the array which // will be true for a valid transition or false for a invalid transition. In some cases even // though the transition is marked as true additional checks must be made. See arming_state_transition // code for those checks. static const bool arming_transitions[ARMING_STATE_MAX][ARMING_STATE_MAX] = { // INIT, STANDBY, ARMED, ARMED_ERROR, STANDBY_ERROR, REBOOT, IN_AIR_RESTORE { /* ARMING_STATE_INIT */ true, true, false, false, false, false, false }, { /* ARMING_STATE_STANDBY */ true, true, true, true, false, false, false }, { /* ARMING_STATE_ARMED */ false, true, true, false, false, false, true }, { /* ARMING_STATE_ARMED_ERROR */ false, false, true, true, false, false, false }, { /* ARMING_STATE_STANDBY_ERROR */ true, true, false, true, true, false, false }, { /* ARMING_STATE_REBOOT */ true, true, false, false, true, true, true }, { /* ARMING_STATE_IN_AIR_RESTORE */ false, false, false, false, false, false, false }, // NYI }; // You can index into the array with an arming_state_t in order to get it's textual representation static const char *state_names[ARMING_STATE_MAX] = { "ARMING_STATE_INIT", "ARMING_STATE_STANDBY", "ARMING_STATE_ARMED", "ARMING_STATE_ARMED_ERROR", "ARMING_STATE_STANDBY_ERROR", "ARMING_STATE_REBOOT", "ARMING_STATE_IN_AIR_RESTORE", }; transition_result_t arming_state_transition(struct vehicle_status_s *status, /// current vehicle status const struct safety_s *safety, /// current safety settings arming_state_t new_arming_state, /// arming state requested struct actuator_armed_s *armed, /// current armed status const int mavlink_fd) /// mavlink fd for error reporting, 0 for none { // Double check that our static arrays are still valid ASSERT(ARMING_STATE_INIT == 0); ASSERT(ARMING_STATE_IN_AIR_RESTORE == ARMING_STATE_MAX - 1); /* * Perform an atomic state update */ irqstate_t flags = irqsave(); transition_result_t ret = TRANSITION_DENIED; /* only check transition if the new state is actually different from the current one */ if (new_arming_state == status->arming_state) { ret = TRANSITION_NOT_CHANGED; } else { /* enforce lockdown in HIL */ if (status->hil_state == HIL_STATE_ON) { armed->lockdown = true; } else { armed->lockdown = false; } // Check that we have a valid state transition bool valid_transition = arming_transitions[new_arming_state][status->arming_state]; if (valid_transition) { // We have a good transition. Now perform any secondary validation. if (new_arming_state == ARMING_STATE_ARMED) { // Fail transition if we need safety switch press // Allow if coming from in air restore // Allow if HIL_STATE_ON if (status->arming_state != ARMING_STATE_IN_AIR_RESTORE && status->hil_state == HIL_STATE_OFF && safety->safety_switch_available && !safety->safety_off) { if (mavlink_fd) { mavlink_log_critical(mavlink_fd, "#audio: NOT ARMING: Press safety switch first."); } valid_transition = false; } } else if (new_arming_state == ARMING_STATE_STANDBY && status->arming_state == ARMING_STATE_ARMED_ERROR) { new_arming_state = ARMING_STATE_STANDBY_ERROR; } } // HIL can always go to standby if (status->hil_state == HIL_STATE_ON && new_arming_state == ARMING_STATE_STANDBY) { valid_transition = true; } /* Sensors need to be initialized for STANDBY state */ if (new_arming_state == ARMING_STATE_STANDBY && !status->condition_system_sensors_initialized) { valid_transition = false; } // Finish up the state transition if (valid_transition) { armed->armed = new_arming_state == ARMING_STATE_ARMED || new_arming_state == ARMING_STATE_ARMED_ERROR; armed->ready_to_arm = new_arming_state == ARMING_STATE_ARMED || new_arming_state == ARMING_STATE_STANDBY; ret = TRANSITION_CHANGED; status->arming_state = new_arming_state; } } /* end of atomic state update */ irqrestore(flags); if (ret == TRANSITION_DENIED) { static const char *errMsg = "Invalid arming transition from %s to %s"; if (mavlink_fd) { mavlink_log_critical(mavlink_fd, errMsg, state_names[status->arming_state], state_names[new_arming_state]); } warnx(errMsg, state_names[status->arming_state], state_names[new_arming_state]); } return ret; } bool is_safe(const struct vehicle_status_s *status, const struct safety_s *safety, const struct actuator_armed_s *armed) { // System is safe if: // 1) Not armed // 2) Armed, but in software lockdown (HIL) // 3) Safety switch is present AND engaged -> actuators locked if (!armed->armed || (armed->armed && armed->lockdown) || (safety->safety_switch_available && !safety->safety_off)) { return true; } else { return false; } } transition_result_t main_state_transition(struct vehicle_status_s *status, main_state_t new_main_state) { transition_result_t ret = TRANSITION_DENIED; /* transition may be denied even if the same state is requested because conditions may have changed */ switch (new_main_state) { case MAIN_STATE_MANUAL: case MAIN_STATE_ACRO: ret = TRANSITION_CHANGED; break; case MAIN_STATE_ALTCTL: /* need at minimum altitude estimate */ /* TODO: add this for fixedwing as well */ if (!status->is_rotary_wing || (status->condition_local_altitude_valid || status->condition_global_position_valid)) { ret = TRANSITION_CHANGED; } break; case MAIN_STATE_POSCTL: /* need at minimum local position estimate */ if (status->condition_local_position_valid || status->condition_global_position_valid) { ret = TRANSITION_CHANGED; } break; case MAIN_STATE_AUTO_MISSION: case MAIN_STATE_AUTO_LOITER: /* need global position estimate */ if (status->condition_global_position_valid) { ret = TRANSITION_CHANGED; } break; case MAIN_STATE_AUTO_RTL: /* need global position and home position */ if (status->condition_global_position_valid && status->condition_home_position_valid) { ret = TRANSITION_CHANGED; } break; case MAIN_STATE_MAX: default: break; } if (ret == TRANSITION_CHANGED) { if (status->main_state != new_main_state) { status->main_state = new_main_state; } else { ret = TRANSITION_NOT_CHANGED; } } return ret; } /** * Transition from one hil state to another */ transition_result_t hil_state_transition(hil_state_t new_state, int status_pub, struct vehicle_status_s *current_status, const int mavlink_fd) { transition_result_t ret = TRANSITION_DENIED; if (current_status->hil_state == new_state) { ret = TRANSITION_NOT_CHANGED; } else { switch (new_state) { case HIL_STATE_OFF: /* we're in HIL and unexpected things can happen if we disable HIL now */ mavlink_log_critical(mavlink_fd, "#audio: Not switching off HIL (safety)"); ret = TRANSITION_DENIED; break; case HIL_STATE_ON: if (current_status->arming_state == ARMING_STATE_INIT || current_status->arming_state == ARMING_STATE_STANDBY || current_status->arming_state == ARMING_STATE_STANDBY_ERROR) { /* Disable publication of all attached sensors */ /* list directory */ DIR *d; d = opendir("/dev"); if (d) { struct dirent *direntry; char devname[24]; while ((direntry = readdir(d)) != NULL) { /* skip serial ports */ if (!strncmp("tty", direntry->d_name, 3)) { continue; } /* skip mtd devices */ if (!strncmp("mtd", direntry->d_name, 3)) { continue; } /* skip ram devices */ if (!strncmp("ram", direntry->d_name, 3)) { continue; } /* skip MMC devices */ if (!strncmp("mmc", direntry->d_name, 3)) { continue; } /* skip mavlink */ if (!strcmp("mavlink", direntry->d_name)) { continue; } /* skip console */ if (!strcmp("console", direntry->d_name)) { continue; } /* skip null */ if (!strcmp("null", direntry->d_name)) { continue; } snprintf(devname, sizeof(devname), "/dev/%s", direntry->d_name); int sensfd = ::open(devname, 0); if (sensfd < 0) { warn("failed opening device %s", devname); continue; } int block_ret = ::ioctl(sensfd, DEVIOCSPUBBLOCK, 1); close(sensfd); printf("Disabling %s: %s\n", devname, (block_ret == OK) ? "OK" : "ERROR"); } closedir(d); ret = TRANSITION_CHANGED; mavlink_log_critical(mavlink_fd, "Switched to ON hil state"); } else { /* failed opening dir */ mavlink_log_info(mavlink_fd, "FAILED LISTING DEVICE ROOT DIRECTORY"); ret = TRANSITION_DENIED; } } else { mavlink_log_critical(mavlink_fd, "Not switching to HIL when armed"); ret = TRANSITION_DENIED; } break; default: warnx("Unknown HIL state"); break; } } if (ret = TRANSITION_CHANGED) { current_status->hil_state = new_state; current_status->timestamp = hrt_absolute_time(); // XXX also set lockdown here orb_publish(ORB_ID(vehicle_status), status_pub, current_status); } return ret; } /** * Check failsafe and main status and set navigation status for navigator accordingly */ void set_nav_state(struct vehicle_status_s *status) { switch (status->failsafe_state) { case FAILSAFE_STATE_NORMAL: /* evaluate main state to decide in normal (non-failsafe) mode */ switch (status->main_state) { case MAIN_STATE_MANUAL: status->set_nav_state = NAVIGATION_STATE_MANUAL; break; case MAIN_STATE_ALTCTL: status->set_nav_state = NAVIGATION_STATE_ALTCTL; break; case MAIN_STATE_POSCTL: status->set_nav_state = NAVIGATION_STATE_POSCTL; break; case MAIN_STATE_AUTO_MISSION: status->set_nav_state = NAVIGATION_STATE_AUTO_MISSION; break; case MAIN_STATE_AUTO_LOITER: status->set_nav_state = NAVIGATION_STATE_AUTO_LOITER; break; case MAIN_STATE_AUTO_RTL: status->set_nav_state = NAVIGATION_STATE_AUTO_RTL; break; case MAIN_STATE_ACRO: status->set_nav_state = NAVIGATION_STATE_ACRO; break; default: break; } break; case FAILSAFE_STATE_RTL_RC: status->set_nav_state = NAVIGATION_STATE_AUTO_RTL_RC; break; case FAILSAFE_STATE_RTL_DL: status->set_nav_state = NAVIGATION_STATE_AUTO_RTL_DL; break; case FAILSAFE_STATE_LAND: status->set_nav_state = NAVIGATION_STATE_LAND; break; case FAILSAFE_STATE_TERMINATION: status->set_nav_state = NAVIGATION_STATE_TERMINATION; break; default: break; } }