/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: @author Thomas Gubler * @author Doug Weibel * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file fixedwing_pos_control.c * Implementation of a fixed wing attitude controller. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Controller parameters, accessible via MAVLink * */ PARAM_DEFINE_FLOAT(FW_HEAD_P, 0.1f); PARAM_DEFINE_FLOAT(FW_HEADR_I, 0.1f); PARAM_DEFINE_FLOAT(FW_HEADR_LIM, 1.5f); //TODO: think about reasonable value PARAM_DEFINE_FLOAT(FW_XTRACK_P, 0.01745f); // Radians per meter off track PARAM_DEFINE_FLOAT(FW_ALT_P, 0.1f); PARAM_DEFINE_FLOAT(FW_ROLL_LIM, 0.7f); // Roll angle limit in radians PARAM_DEFINE_FLOAT(FW_HEADR_P, 0.1f); PARAM_DEFINE_FLOAT(FW_PITCH_LIM, 0.35f); /**< Pitch angle limit in radians per second */ struct fw_pos_control_params { float heading_p; float headingr_p; float headingr_i; float headingr_lim; float xtrack_p; float altitude_p; float roll_lim; float pitch_lim; }; struct fw_pos_control_param_handles { param_t heading_p; param_t headingr_p; param_t headingr_i; param_t headingr_lim; param_t xtrack_p; param_t altitude_p; param_t roll_lim; param_t pitch_lim; }; struct planned_path_segments_s { bool segment_type; double start_lat; // Start of line or center of arc double start_lon; double end_lat; double end_lon; float radius; // Radius of arc float arc_start_bearing; // Bearing from center to start of arc float arc_sweep; // Angle (radians) swept out by arc around center. // Positive for clockwise, negative for counter-clockwise }; /* Prototypes */ /* Internal Prototypes */ static int parameters_init(struct fw_pos_control_param_handles *h); static int parameters_update(const struct fw_pos_control_param_handles *h, struct fw_pos_control_params *p); /** * Deamon management function. */ __EXPORT int fixedwing_pos_control_main(int argc, char *argv[]); /** * Mainloop of deamon. */ int fixedwing_pos_control_thread_main(int argc, char *argv[]); /** * Print the correct usage. */ static void usage(const char *reason); /* Variables */ static bool thread_should_exit = false; /**< Deamon exit flag */ static bool thread_running = false; /**< Deamon status flag */ static int deamon_task; /**< Handle of deamon task / thread */ /** * Parameter management */ static int parameters_init(struct fw_pos_control_param_handles *h) { /* PID parameters */ h->heading_p = param_find("FW_HEAD_P"); h->headingr_p = param_find("FW_HEADR_P"); h->headingr_i = param_find("FW_HEADR_I"); h->headingr_lim = param_find("FW_HEADR_LIM"); h->xtrack_p = param_find("FW_XTRACK_P"); h->altitude_p = param_find("FW_ALT_P"); h->roll_lim = param_find("FW_ROLL_LIM"); h->pitch_lim = param_find("FW_PITCH_LIM"); return OK; } static int parameters_update(const struct fw_pos_control_param_handles *h, struct fw_pos_control_params *p) { param_get(h->heading_p, &(p->heading_p)); param_get(h->headingr_p, &(p->headingr_p)); param_get(h->headingr_i, &(p->headingr_i)); param_get(h->headingr_lim, &(p->headingr_lim)); param_get(h->xtrack_p, &(p->xtrack_p)); param_get(h->altitude_p, &(p->altitude_p)); param_get(h->roll_lim, &(p->roll_lim)); param_get(h->pitch_lim, &(p->pitch_lim)); return OK; } /* Main Thread */ int fixedwing_pos_control_thread_main(int argc, char *argv[]) { /* read arguments */ bool verbose = false; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) { verbose = true; } } /* welcome user */ printf("[fixedwing pos control] started\n"); /* declare and safely initialize all structs */ struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); struct vehicle_global_position_s start_pos; // Temporary variable, replace with memset(&start_pos, 0, sizeof(start_pos)); // previous waypoint when available struct vehicle_global_position_setpoint_s global_setpoint; memset(&global_setpoint, 0, sizeof(global_setpoint)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct crosstrack_error_s xtrack_err; memset(&xtrack_err, 0, sizeof(xtrack_err)); struct parameter_update_s param_update; memset(¶m_update, 0, sizeof(param_update)); /* output structs */ struct vehicle_attitude_setpoint_s attitude_setpoint; memset(&attitude_setpoint, 0, sizeof(attitude_setpoint)); /* publish attitude setpoint */ attitude_setpoint.roll_body = 0.0f; attitude_setpoint.pitch_body = 0.0f; attitude_setpoint.yaw_body = 0.0f; attitude_setpoint.thrust = 0.0f; orb_advert_t attitude_setpoint_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &attitude_setpoint); /* subscribe */ int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); int global_setpoint_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint)); int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int param_sub = orb_subscribe(ORB_ID(parameter_update)); /* Setup of loop */ struct pollfd fds[2] = { { .fd = param_sub, .events = POLLIN }, { .fd = att_sub, .events = POLLIN } }; bool global_sp_updated_set_once = false; float psi_track = 0.0f; int counter = 0; struct fw_pos_control_params p; struct fw_pos_control_param_handles h; PID_t heading_controller; PID_t heading_rate_controller; PID_t offtrack_controller; PID_t altitude_controller; parameters_init(&h); parameters_update(&h, &p); pid_init(&heading_controller, p.heading_p, 0.0f, 0.0f, 0.0f, 10000.0f, PID_MODE_DERIVATIV_NONE, 0.0f); //arbitrary high limit pid_init(&heading_rate_controller, p.headingr_p, p.headingr_i, 0.0f, 0.0f, p.roll_lim, PID_MODE_DERIVATIV_NONE, 0.0f); pid_init(&altitude_controller, p.altitude_p, 0.0f, 0.0f, 0.0f, p.pitch_lim, PID_MODE_DERIVATIV_NONE, 0.0f); pid_init(&offtrack_controller, p.xtrack_p, 0.0f, 0.0f, 0.0f , 60.0f * M_DEG_TO_RAD, PID_MODE_DERIVATIV_NONE, 0.0f); //TODO: remove hardcoded value /* error and performance monitoring */ perf_counter_t fw_interval_perf = perf_alloc(PC_INTERVAL, "fixedwing_pos_control_interval"); perf_counter_t fw_err_perf = perf_alloc(PC_COUNT, "fixedwing_pos_control_err"); while (!thread_should_exit) { /* wait for a sensor update, check for exit condition every 500 ms */ int ret = poll(fds, 2, 500); if (ret < 0) { /* poll error, count it in perf */ perf_count(fw_err_perf); } else if (ret == 0) { /* no return value, ignore */ } else { /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), param_sub, &update); /* update parameters from storage */ parameters_update(&h, &p); pid_set_parameters(&heading_controller, p.heading_p, 0, 0, 0, 10000.0f); //arbitrary high limit pid_set_parameters(&heading_rate_controller, p.headingr_p, p.headingr_i, 0, 0, p.roll_lim); pid_set_parameters(&altitude_controller, p.altitude_p, 0, 0, 0, p.pitch_lim); pid_set_parameters(&offtrack_controller, p.xtrack_p, 0, 0, 0, 60.0f * M_DEG_TO_RAD); //TODO: remove hardcoded value } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* check if there is a new position or setpoint */ bool pos_updated; orb_check(global_pos_sub, &pos_updated); bool global_sp_updated; orb_check(global_setpoint_sub, &global_sp_updated); /* load local copies */ orb_copy(ORB_ID(vehicle_attitude), att_sub, &att); if (pos_updated) { orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos); } if (global_sp_updated) { orb_copy(ORB_ID(vehicle_global_position_setpoint), global_setpoint_sub, &global_setpoint); start_pos = global_pos; //for now using the current position as the startpoint (= approx. last waypoint because the setpoint switch occurs at the waypoint) global_sp_updated_set_once = true; psi_track = get_bearing_to_next_waypoint((double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d, (double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d); printf("next wp direction: %0.4f\n", (double)psi_track); } /* Simple Horizontal Control */ if (global_sp_updated_set_once) { // if (counter % 100 == 0) // printf("lat_sp %d, ln_sp %d, lat: %d, lon: %d\n", global_setpoint.lat, global_setpoint.lon, global_pos.lat, global_pos.lon); /* calculate crosstrack error */ // Only the case of a straight line track following handled so far int distance_res = get_distance_to_line(&xtrack_err, (double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d, (double)start_pos.lat / (double)1e7d, (double)start_pos.lon / (double)1e7d, (double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d); // XXX what is xtrack_err.past_end? if (distance_res == OK /*&& !xtrack_err.past_end*/) { float delta_psi_c = pid_calculate(&offtrack_controller, 0, xtrack_err.distance, 0.0f, 0.0f); //p.xtrack_p * xtrack_err.distance float psi_c = psi_track + delta_psi_c; float psi_e = psi_c - att.yaw; /* wrap difference back onto -pi..pi range */ psi_e = _wrap_pi(psi_e); if (verbose) { printf("xtrack_err.distance %.4f ", (double)xtrack_err.distance); printf("delta_psi_c %.4f ", (double)delta_psi_c); printf("psi_c %.4f ", (double)psi_c); printf("att.yaw %.4f ", (double)att.yaw); printf("psi_e %.4f ", (double)psi_e); } /* calculate roll setpoint, do this artificially around zero */ float delta_psi_rate_c = pid_calculate(&heading_controller, psi_e, 0.0f, 0.0f, 0.0f); float psi_rate_track = 0; //=V_gr/r_track , this will be needed for implementation of arc following float psi_rate_c = delta_psi_rate_c + psi_rate_track; /* limit turn rate */ if (psi_rate_c > p.headingr_lim) { psi_rate_c = p.headingr_lim; } else if (psi_rate_c < -p.headingr_lim) { psi_rate_c = -p.headingr_lim; } float psi_rate_e = psi_rate_c - att.yawspeed; // XXX sanity check: Assume 10 m/s stall speed and no stall condition float ground_speed = sqrtf(global_pos.vx * global_pos.vx + global_pos.vy * global_pos.vy); if (ground_speed < 10.0f) { ground_speed = 10.0f; } float psi_rate_e_scaled = psi_rate_e * ground_speed / 9.81f; //* V_gr / g attitude_setpoint.roll_body = pid_calculate(&heading_rate_controller, psi_rate_e_scaled, 0.0f, 0.0f, deltaT); if (verbose) { printf("psi_rate_c %.4f ", (double)psi_rate_c); printf("psi_rate_e_scaled %.4f ", (double)psi_rate_e_scaled); printf("rollbody %.4f\n", (double)attitude_setpoint.roll_body); } if (verbose && counter % 100 == 0) printf("xtrack_err.distance: %0.4f, delta_psi_c: %0.4f\n", xtrack_err.distance, delta_psi_c); } else { if (verbose && counter % 100 == 0) printf("distance_res: %d, past_end %d\n", distance_res, xtrack_err.past_end); } /* Very simple Altitude Control */ if (pos_updated) { //TODO: take care of relative vs. ab. altitude attitude_setpoint.pitch_body = pid_calculate(&altitude_controller, global_setpoint.altitude, global_pos.alt, 0.0f, 0.0f); } // XXX need speed control attitude_setpoint.thrust = 0.7f; /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_attitude_setpoint), attitude_setpoint_pub, &attitude_setpoint); /* measure in what intervals the controller runs */ perf_count(fw_interval_perf); counter++; } else { // XXX no setpoint, decent default needed (loiter?) } } } } printf("[fixedwing_pos_control] exiting.\n"); thread_running = false; close(attitude_setpoint_pub); fflush(stdout); exit(0); return 0; } /* Startup Functions */ static void usage(const char *reason) { if (reason) fprintf(stderr, "%s\n", reason); fprintf(stderr, "usage: fixedwing_pos_control {start|stop|status}\n\n"); exit(1); } /** * The deamon app only briefly exists to start * the background job. The stack size assigned in the * Makefile does only apply to this management task. * * The actual stack size should be set in the call * to task_create(). */ int fixedwing_pos_control_main(int argc, char *argv[]) { if (argc < 1) usage("missing command"); if (!strcmp(argv[1], "start")) { if (thread_running) { printf("fixedwing_pos_control already running\n"); /* this is not an error */ exit(0); } thread_should_exit = false; deamon_task = task_spawn_cmd("fixedwing_pos_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 20, 2048, fixedwing_pos_control_thread_main, (argv) ? (const char **)&argv[2] : (const char **)NULL); thread_running = true; exit(0); } if (!strcmp(argv[1], "stop")) { thread_should_exit = true; exit(0); } if (!strcmp(argv[1], "status")) { if (thread_running) { printf("\tfixedwing_pos_control is running\n"); } else { printf("\tfixedwing_pos_control not started\n"); } exit(0); } usage("unrecognized command"); exit(1); }