/* Copyright (c) 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_att_control_base.cpp * * @author Roman Bapst * */ #include "fw_att_control_base.h" #include #include #include using namespace std; FixedwingAttitudeControlBase::FixedwingAttitudeControlBase() : _task_should_exit(false), _task_running(false), _control_task(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), _nonfinite_input_perf( perf_alloc(PC_COUNT, "fw att control nonfinite input")), _nonfinite_output_perf( perf_alloc(PC_COUNT, "fw att control nonfinite output")), /* states */ _setpoint_valid(false), _debug(false) { /* safely initialize structs */ _att = {}; _att_sp = {}; _manual = {}; _airspeed = {}; _vcontrol_mode = {}; _actuators = {}; _actuators_airframe = {}; _global_pos = {}; _vehicle_status = {}; } FixedwingAttitudeControlBase::~FixedwingAttitudeControlBase() { } void FixedwingAttitudeControlBase::control_attitude() { bool lock_integrator = false; static int loop_counter = 0; /* scale around tuning airspeed */ float airspeed; /* if airspeed is not updating, we assume the normal average speed */ if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s) || hrt_elapsed_time(&_airspeed.timestamp) > 1e6) { airspeed = _parameters.airspeed_trim; if (nonfinite) { perf_count(_nonfinite_input_perf); } } else { /* prevent numerical drama by requiring 0.5 m/s minimal speed */ airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s); } /* * For scaling our actuators using anything less than the min (close to stall) * speed doesn't make any sense - its the strongest reasonable deflection we * want to do in flight and its the baseline a human pilot would choose. * * Forcing the scaling to this value allows reasonable handheld tests. */ float airspeed_scaling = _parameters.airspeed_trim / ((airspeed < _parameters.airspeed_min) ? _parameters.airspeed_min : airspeed); float roll_sp = _parameters.rollsp_offset_rad; float pitch_sp = _parameters.pitchsp_offset_rad; float throttle_sp = 0.0f; if (_vcontrol_mode.flag_control_velocity_enabled || _vcontrol_mode.flag_control_position_enabled) { /* read in attitude setpoint from attitude setpoint uorb topic */ roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad; pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else { /* * Scale down roll and pitch as the setpoints are radians * and a typical remote can only do around 45 degrees, the mapping is * -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch) * * With this mapping the stick angle is a 1:1 representation of * the commanded attitude. * * The trim gets subtracted here from the manual setpoint to get * the intended attitude setpoint. Later, after the rate control step the * trim is added again to the control signal. */ roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll) + _parameters.rollsp_offset_rad; pitch_sp = -(_manual.x * _parameters.man_pitch_max - _parameters.trim_pitch) + _parameters.pitchsp_offset_rad; throttle_sp = _manual.z; _actuators.control[4] = _manual.flaps; /* * in manual mode no external source should / does emit attitude setpoints. * emit the manual setpoint here to allow attitude controller tuning * in attitude control mode. */ struct vehicle_attitude_setpoint_s att_sp; att_sp.timestamp = hrt_absolute_time(); att_sp.roll_body = roll_sp; att_sp.pitch_body = pitch_sp; att_sp.yaw_body = 0.0f - _parameters.trim_yaw; att_sp.thrust = throttle_sp; } /* If the aircraft is on ground reset the integrators */ if (_vehicle_status.condition_landed) { _roll_ctrl.reset_integrator(); _pitch_ctrl.reset_integrator(); _yaw_ctrl.reset_integrator(); } /* Prepare speed_body_u and speed_body_w */ float speed_body_u = 0.0f; float speed_body_v = 0.0f; float speed_body_w = 0.0f; if (_att.R_valid) { speed_body_u = _att.R[0][0] * _global_pos.vel_n + _att.R[1][0] * _global_pos.vel_e + _att.R[2][0] * _global_pos.vel_d; speed_body_v = _att.R[0][1] * _global_pos.vel_n + _att.R[1][1] * _global_pos.vel_e + _att.R[2][1] * _global_pos.vel_d; speed_body_w = _att.R[0][2] * _global_pos.vel_n + _att.R[1][2] * _global_pos.vel_e + _att.R[2][2] * _global_pos.vel_d; } else { if (_debug && loop_counter % 10 == 0) { warnx("Did not get a valid R\n"); } } /* Run attitude controllers */ if (isfinite(roll_sp) && isfinite(pitch_sp)) { _roll_ctrl.control_attitude(roll_sp, _att.roll); _pitch_ctrl.control_attitude(pitch_sp, _att.roll, _att.pitch, airspeed); _yaw_ctrl.control_attitude(_att.roll, _att.pitch, speed_body_u, speed_body_v, speed_body_w, _roll_ctrl.get_desired_rate(), _pitch_ctrl.get_desired_rate()); //runs last, because is depending on output of roll and pitch attitude /* Run attitude RATE controllers which need the desired attitudes from above, add trim */ float roll_u = _roll_ctrl.control_bodyrate(_att.pitch, _att.rollspeed, _att.yawspeed, _yaw_ctrl.get_desired_rate(), _parameters.airspeed_min, _parameters.airspeed_max, airspeed, airspeed_scaling, lock_integrator); _actuators.control[0] = (isfinite(roll_u)) ? roll_u + _parameters.trim_roll : _parameters.trim_roll; if (!isfinite(roll_u)) { _roll_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("roll_u %.4f", (double) roll_u); } } float pitch_u = _pitch_ctrl.control_bodyrate(_att.roll, _att.pitch, _att.pitchspeed, _att.yawspeed, _yaw_ctrl.get_desired_rate(), _parameters.airspeed_min, _parameters.airspeed_max, airspeed, airspeed_scaling, lock_integrator); _actuators.control[1] = (isfinite(pitch_u)) ? pitch_u + _parameters.trim_pitch : _parameters.trim_pitch; if (!isfinite(pitch_u)) { _pitch_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f," " airspeed %.4f, airspeed_scaling %.4f," " roll_sp %.4f, pitch_sp %.4f," " _roll_ctrl.get_desired_rate() %.4f," " _pitch_ctrl.get_desired_rate() %.4f" " att_sp.roll_body %.4f", (double) pitch_u, (double) _yaw_ctrl.get_desired_rate(), (double) airspeed, (double) airspeed_scaling, (double) roll_sp, (double) pitch_sp, (double) _roll_ctrl.get_desired_rate(), (double) _pitch_ctrl.get_desired_rate(), (double) _att_sp.roll_body); } } float yaw_u = _yaw_ctrl.control_bodyrate(_att.roll, _att.pitch, _att.pitchspeed, _att.yawspeed, _pitch_ctrl.get_desired_rate(), _parameters.airspeed_min, _parameters.airspeed_max, airspeed, airspeed_scaling, lock_integrator); _actuators.control[2] = (isfinite(yaw_u)) ? yaw_u + _parameters.trim_yaw : _parameters.trim_yaw; if (!isfinite(yaw_u)) { _yaw_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("yaw_u %.4f", (double) yaw_u); } } /* throttle passed through */ _actuators.control[3] = (isfinite(throttle_sp)) ? throttle_sp : 0.0f; if (!isfinite(throttle_sp)) { if (_debug && loop_counter % 10 == 0) { warnx("throttle_sp %.4f", (double) throttle_sp); } } } else { perf_count(_nonfinite_input_perf); if (_debug && loop_counter % 10 == 0) { warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f", (double) roll_sp, (double) pitch_sp); } } } void FixedwingAttitudeControlBase::set_attitude(const Eigen::Quaternion attitude) { // watch out, still need to see where we modify attitude for the tailsitter case math::Quaternion quat; quat(0) = (float)attitude.w(); quat(1) = (float)attitude.x(); quat(2) = (float)attitude.y(); quat(3) = (float)attitude.z(); _att.q[0] = quat(0); _att.q[1] = quat(1); _att.q[2] = quat(2); _att.q[3] = quat(3); math::Matrix<3,3> Rot = quat.to_dcm(); _att.R[0][0] = Rot(0,0); _att.R[1][0] = Rot(1,0); _att.R[2][0] = Rot(2,0); _att.R[0][1] = Rot(0,1); _att.R[1][1] = Rot(1,1); _att.R[2][1] = Rot(2,1); _att.R[0][2] = Rot(0,2); _att.R[1][2] = Rot(1,2); _att.R[2][2] = Rot(2,2); _att.R_valid = true; } void FixedwingAttitudeControlBase::set_attitude_rates(const Eigen::Vector3d& angular_rate) { _att.rollspeed = angular_rate(0); _att.pitchspeed = angular_rate(1); _att.yawspeed = angular_rate(2); } void FixedwingAttitudeControlBase::set_attitude_reference(const Eigen::Vector4d& control_attitude_thrust_reference) { _att_sp.roll_body = control_attitude_thrust_reference(0); _att_sp.pitch_body = control_attitude_thrust_reference(1); _att_sp.yaw_body = control_attitude_thrust_reference(2); _att_sp.thrust = (control_attitude_thrust_reference(3) -30)*(-1)/30; // setup rotation matrix math::Matrix<3,3> Rot_sp; Rot_sp.from_euler(_att_sp.roll_body,_att_sp.pitch_body,_att_sp.yaw_body); _att_sp.R_body[0][0] = Rot_sp(0,0); _att_sp.R_body[1][0] = Rot_sp(1,0); _att_sp.R_body[2][0] = Rot_sp(2,0); _att_sp.R_body[0][1] = Rot_sp(0,1); _att_sp.R_body[1][1] = Rot_sp(1,1); _att_sp.R_body[2][1] = Rot_sp(2,1); _att_sp.R_body[0][2] = Rot_sp(0,2); _att_sp.R_body[1][2] = Rot_sp(1,2); _att_sp.R_body[2][2] = Rot_sp(2,2); } void FixedwingAttitudeControlBase::get_mixer_input(Eigen::Vector4d& motor_inputs) { motor_inputs(0) = _actuators.control[0]; motor_inputs(1) = _actuators.control[1]; motor_inputs(2) = _actuators.control[2]; motor_inputs(3) = _actuators.control[3]; }