/**************************************************************************** * * Copyright (c) 2013 PX4 Development Team. All rights reserved. * Author: Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file fw_att_control_main.c * Implementation of a generic attitude controller based on classic orthogonal PIDs. * * @author Lorenz Meier * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Fixedwing attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[]); class FixedwingAttitudeControl { public: /** * Constructor */ FixedwingAttitudeControl(); /** * Destructor, also kills the sensors task. */ ~FixedwingAttitudeControl(); /** * Start the sensors task. * * @return OK on success. */ int start(); private: bool _task_should_exit; /**< if true, sensor task should exit */ int _control_task; /**< task handle for sensor task */ int _att_sub; /**< vehicle attitude subscription */ int _accel_sub; /**< accelerometer subscription */ int _att_sp_sub; /**< vehicle attitude setpoint */ int _attitude_sub; /**< raw rc channels data subscription */ int _airspeed_sub; /**< airspeed subscription */ int _vcontrol_mode_sub; /**< vehicle status subscription */ int _params_sub; /**< notification of parameter updates */ int _manual_sub; /**< notification of manual control updates */ orb_advert_t _rate_sp_pub; /**< rate setpoint publication */ orb_advert_t _attitude_sp_pub; /**< attitude setpoint point */ orb_advert_t _actuators_0_pub; /**< actuator control group 0 setpoint */ struct vehicle_attitude_s _att; /**< vehicle attitude */ struct accel_report _accel; /**< body frame accelerations */ struct vehicle_attitude_setpoint_s _att_sp; /**< vehicle attitude setpoint */ struct manual_control_setpoint_s _manual; /**< r/c channel data */ struct airspeed_s _airspeed; /**< airspeed */ struct vehicle_control_mode_s _vcontrol_mode; /**< vehicle control mode */ struct actuator_controls_s _actuators; /**< actuator control inputs */ perf_counter_t _loop_perf; /**< loop performance counter */ bool _setpoint_valid; /**< flag if the position control setpoint is valid */ bool _airspeed_valid; /**< flag if the airspeed measurement is valid */ struct { float tconst; float p_p; float p_d; float p_i; float p_rmax_pos; float p_rmax_neg; float p_integrator_max; float p_roll_feedforward; float r_p; float r_d; float r_i; float r_integrator_max; float r_rmax; float y_p; float y_i; float y_d; float y_roll_feedforward; float y_integrator_max; float airspeed_min; float airspeed_trim; float airspeed_max; } _parameters; /**< local copies of interesting parameters */ struct { param_t tconst; param_t p_p; param_t p_d; param_t p_i; param_t p_rmax_pos; param_t p_rmax_neg; param_t p_integrator_max; param_t p_roll_feedforward; param_t r_p; param_t r_d; param_t r_i; param_t r_integrator_max; param_t r_rmax; param_t y_p; param_t y_i; param_t y_d; param_t y_roll_feedforward; param_t y_integrator_max; param_t airspeed_min; param_t airspeed_trim; param_t airspeed_max; } _parameter_handles; /**< handles for interesting parameters */ ECL_RollController _roll_ctrl; ECL_PitchController _pitch_ctrl; ECL_YawController _yaw_ctrl; /** * Update our local parameter cache. */ int parameters_update(); /** * Update control outputs * */ void control_update(); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for airspeed updates. */ bool vehicle_airspeed_poll(); /** * Check for accel updates. */ void vehicle_accel_poll(); /** * Check for set triplet updates. */ void vehicle_setpoint_poll(); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main sensor collection task. */ void task_main() __attribute__((noreturn)); }; namespace att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; FixedwingAttitudeControl *g_control; } FixedwingAttitudeControl::FixedwingAttitudeControl() : _task_should_exit(false), _control_task(-1), /* subscriptions */ _att_sub(-1), _accel_sub(-1), _airspeed_sub(-1), _vcontrol_mode_sub(-1), _params_sub(-1), _manual_sub(-1), /* publications */ _rate_sp_pub(-1), _actuators_0_pub(-1), _attitude_sp_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), /* states */ _setpoint_valid(false), _airspeed_valid(false) { _parameter_handles.tconst = param_find("FW_ATT_TC"); _parameter_handles.p_p = param_find("FW_P_P"); _parameter_handles.p_d = param_find("FW_P_D"); _parameter_handles.p_i = param_find("FW_P_I"); _parameter_handles.p_rmax_pos = param_find("FW_P_RMAX_POS"); _parameter_handles.p_rmax_neg = param_find("FW_P_RMAX_NEG"); _parameter_handles.p_integrator_max = param_find("FW_P_integrator_max"); _parameter_handles.p_roll_feedforward = param_find("FW_P_ROLLFF"); _parameter_handles.r_p = param_find("FW_R_P"); _parameter_handles.r_d = param_find("FW_R_D"); _parameter_handles.r_i = param_find("FW_R_I"); _parameter_handles.r_integrator_max = param_find("FW_R_integrator_max"); _parameter_handles.r_rmax = param_find("FW_R_RMAX"); _parameter_handles.y_p = param_find("FW_Y_P"); _parameter_handles.y_i = param_find("FW_Y_I"); _parameter_handles.y_d = param_find("FW_Y_D"); _parameter_handles.y_roll_feedforward = param_find("FW_Y_ROLLFF"); _parameter_handles.y_integrator_max = param_find("FW_Y_integrator_max"); _parameter_handles.airspeed_min = param_find("FW_AIRSPD_MIN"); _parameter_handles.airspeed_trim = param_find("FW_AIRSPD_TRIM"); _parameter_handles.airspeed_max = param_find("FW_AIRSPD_MAX"); /* fetch initial parameter values */ parameters_update(); } FixedwingAttitudeControl::~FixedwingAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } att_control::g_control = nullptr; } int FixedwingAttitudeControl::parameters_update() { param_get(_parameter_handles.tconst, &(_parameters.tconst)); param_get(_parameter_handles.p_p, &(_parameters.p_p)); param_get(_parameter_handles.p_d, &(_parameters.p_d)); param_get(_parameter_handles.p_i, &(_parameters.p_i)); param_get(_parameter_handles.p_rmax_pos, &(_parameters.p_rmax_pos)); param_get(_parameter_handles.p_rmax_neg, &(_parameters.p_rmax_neg)); param_get(_parameter_handles.p_integrator_max, &(_parameters.p_integrator_max)); param_get(_parameter_handles.p_roll_feedforward, &(_parameters.p_roll_feedforward)); param_get(_parameter_handles.r_p, &(_parameters.r_p)); param_get(_parameter_handles.r_d, &(_parameters.r_d)); param_get(_parameter_handles.r_i, &(_parameters.r_i)); param_get(_parameter_handles.r_integrator_max, &(_parameters.r_integrator_max)); param_get(_parameter_handles.r_rmax, &(_parameters.r_rmax)); param_get(_parameter_handles.y_p, &(_parameters.y_p)); param_get(_parameter_handles.y_i, &(_parameters.y_i)); param_get(_parameter_handles.y_d, &(_parameters.y_d)); param_get(_parameter_handles.y_roll_feedforward, &(_parameters.y_roll_feedforward)); param_get(_parameter_handles.y_integrator_max, &(_parameters.y_integrator_max)); param_get(_parameter_handles.airspeed_min, &(_parameters.airspeed_min)); param_get(_parameter_handles.airspeed_trim, &(_parameters.airspeed_trim)); param_get(_parameter_handles.airspeed_max, &(_parameters.airspeed_max)); /* pitch control parameters */ _pitch_ctrl.set_time_constant(_parameters.tconst); _pitch_ctrl.set_k_p(math::radians(_parameters.p_p)); _pitch_ctrl.set_k_i(math::radians(_parameters.p_i)); _pitch_ctrl.set_k_d(math::radians(_parameters.p_d)); _pitch_ctrl.set_integrator_max(math::radians(_parameters.p_integrator_max)); _pitch_ctrl.set_max_rate_pos(math::radians(_parameters.p_rmax_pos)); _pitch_ctrl.set_max_rate_neg(math::radians(_parameters.p_rmax_neg)); _pitch_ctrl.set_roll_ff(math::radians(_parameters.p_roll_feedforward)); /* roll control parameters */ _roll_ctrl.set_time_constant(_parameters.tconst); _roll_ctrl.set_k_p(math::radians(_parameters.r_p)); _roll_ctrl.set_k_i(math::radians(_parameters.r_i)); _roll_ctrl.set_k_d(math::radians(_parameters.r_d)); _roll_ctrl.set_integrator_max(math::radians(_parameters.r_integrator_max)); _roll_ctrl.set_max_rate(math::radians(_parameters.r_rmax)); /* yaw control parameters */ _yaw_ctrl.set_k_side(math::radians(_parameters.y_p)); _yaw_ctrl.set_k_i(math::radians(_parameters.y_i)); _yaw_ctrl.set_k_d(math::radians(_parameters.y_d)); _yaw_ctrl.set_k_roll_ff(math::radians(_parameters.y_roll_feedforward)); _yaw_ctrl.set_integrator_max(math::radians(_parameters.y_integrator_max)); return OK; } void FixedwingAttitudeControl::vehicle_control_mode_poll() { bool vcontrol_mode_updated; /* Check HIL state if vehicle status has changed */ orb_check(_vcontrol_mode_sub, &vcontrol_mode_updated); if (vcontrol_mode_updated) { orb_copy(ORB_ID(vehicle_control_mode), _vcontrol_mode_sub, &_vcontrol_mode); } } void FixedwingAttitudeControl::vehicle_manual_poll() { bool manual_updated; /* get pilots inputs */ orb_check(_manual_sub, &manual_updated); if (manual_updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_sub, &_manual); } } bool FixedwingAttitudeControl::vehicle_airspeed_poll() { /* check if there is a new position */ bool airspeed_updated; orb_check(_airspeed_sub, &airspeed_updated); if (airspeed_updated) { orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed); return true; } return false; } void FixedwingAttitudeControl::vehicle_accel_poll() { /* check if there is a new position */ bool accel_updated; orb_check(_accel_sub, &accel_updated); if (accel_updated) { orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel); } } void FixedwingAttitudeControl::vehicle_setpoint_poll() { /* check if there is a new setpoint */ bool att_sp_updated; orb_check(_att_sp_sub, &att_sp_updated); if (att_sp_updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _att_sp_sub, &_att_sp); _setpoint_valid = true; } } void FixedwingAttitudeControl::task_main_trampoline(int argc, char *argv[]) { att_control::g_control->task_main(); } void FixedwingAttitudeControl::task_main() { /* inform about start */ warnx("Initializing.."); fflush(stdout); /* * do subscriptions */ _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _accel_sub = orb_subscribe(ORB_ID(sensor_accel)); _airspeed_sub = orb_subscribe(ORB_ID(airspeed)); _vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); /* rate limit vehicle status updates to 5Hz */ orb_set_interval(_vcontrol_mode_sub, 200); orb_set_interval(_att_sub, 100); parameters_update(); /* get an initial update for all sensor and status data */ (void)vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); /* wakeup source(s) */ struct pollfd fds[2]; /* Setup of loop */ fds[0].fd = _params_sub; fds[0].events = POLLIN; fds[1].fd = _att_sub; fds[1].events = POLLIN; while (!_task_should_exit) { /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); /* update parameters from storage */ parameters_update(); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too large deltaT's */ if (deltaT > 1.0f) deltaT = 0.01f; /* load local copies */ orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att); _airspeed_valid = vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); /* lock integrator until control is started */ bool lock_integrator; if (_vcontrol_mode.flag_control_attitude_enabled) { lock_integrator = false; } else { lock_integrator = true; } /* decide if in stabilized or full manual control */ if (_vcontrol_mode.flag_control_attitude_enabled) { /* scale from radians to normalized -1 .. 1 range */ const float actuator_scaling = 1.0f / (M_PI_F / 4.0f); /* scale around tuning airspeed */ float airspeed; /* if airspeed is smaller than min, the sensor is not giving good readings */ if (!_airspeed_valid || (_airspeed.indicated_airspeed_m_s < _parameters.airspeed_min) || !isfinite(_airspeed.indicated_airspeed_m_s)) { airspeed = _parameters.airspeed_min + (_parameters.airspeed_max - _parameters.airspeed_min) / 2.0f; } else { airspeed = _airspeed.indicated_airspeed_m_s; } float airspeed_scaling = _parameters.airspeed_trim / airspeed; //warnx("aspd scale: %6.2f act scale: %6.2f", airspeed_scaling, actuator_scaling); float roll_sp, pitch_sp; float throttle_sp = 0.0f; if (_vcontrol_mode.flag_control_velocity_enabled || _vcontrol_mode.flag_control_position_enabled) { roll_sp = _att_sp.roll_body; pitch_sp = _att_sp.pitch_body; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) _roll_ctrl.reset_integrator(); } else { /* * Scale down roll and pitch as the setpoints are radians * and a typical remote can only do 45 degrees, the mapping is * -1..+1 to -45..+45 degrees or -0.75..+0.75 radians. * * With this mapping the stick angle is a 1:1 representation of * the commanded attitude. If more than 45 degrees are desired, * a scaling parameter can be applied to the remote. */ roll_sp = _manual.roll * 0.75f; pitch_sp = _manual.pitch * 0.75f; throttle_sp = _manual.throttle; _actuators.control[4] = _manual.flaps; /* * in manual mode no external source should / does emit attitude setpoints. * emit the manual setpoint here to allow attitude controller tuning * in attitude control mode. */ struct vehicle_attitude_setpoint_s att_sp; att_sp.timestamp = hrt_absolute_time(); att_sp.roll_body = roll_sp; att_sp.pitch_body = pitch_sp; att_sp.yaw_body = 0.0f; att_sp.thrust = throttle_sp; /* lazily publish the setpoint only once available */ if (_attitude_sp_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_attitude_setpoint), _attitude_sp_pub, &att_sp); } else { /* advertise and publish */ _attitude_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp); } } if (isfinite(roll_sp) && isfinite(pitch_sp)) { float roll_rad = _roll_ctrl.control(roll_sp, _att.roll, _att.rollspeed, airspeed_scaling, lock_integrator, _parameters.airspeed_min, _parameters.airspeed_max, airspeed); _actuators.control[0] = (isfinite(roll_rad)) ? roll_rad * actuator_scaling : 0.0f; float pitch_rad = _pitch_ctrl.control(pitch_sp, _att.pitch, _att.pitchspeed, _att.roll, airspeed_scaling, lock_integrator, _parameters.airspeed_min, _parameters.airspeed_max, airspeed); _actuators.control[1] = (isfinite(pitch_rad)) ? pitch_rad * actuator_scaling : 0.0f; float yaw_rad = _yaw_ctrl.control(_att.roll, _att.yawspeed, _accel.y, airspeed_scaling, lock_integrator, _parameters.airspeed_min, _parameters.airspeed_max, airspeed); _actuators.control[2] = (isfinite(yaw_rad)) ? yaw_rad * actuator_scaling : 0.0f; /* throttle passed through */ _actuators.control[3] = (isfinite(throttle_sp)) ? throttle_sp : 0.0f; // warnx("aspd: %s: %6.2f, aspd scaling: %6.2f, controls: %5.2f %5.2f %5.2f %5.2f", (_airspeed_valid) ? "valid" : "unknown", // airspeed, airspeed_scaling, _actuators.control[0], _actuators.control[1], // _actuators.control[2], _actuators.control[3]); /* * Lazily publish the rate setpoint (for analysis, the actuators are published below) * only once available */ vehicle_rates_setpoint_s rates_sp; rates_sp.roll = _roll_ctrl.get_desired_rate(); rates_sp.pitch = _pitch_ctrl.get_desired_rate(); rates_sp.yaw = 0.0f; // XXX not yet implemented rates_sp.timestamp = hrt_absolute_time(); if (_rate_sp_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_rates_setpoint), _rate_sp_pub, &rates_sp); } else { /* advertise and publish */ _rate_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp); } } } else { /* manual/direct control */ _actuators.control[0] = _manual.roll; _actuators.control[1] = _manual.pitch; _actuators.control[2] = _manual.yaw; _actuators.control[3] = _manual.throttle; _actuators.control[4] = _manual.flaps; } _actuators.control[5] = _manual.aux1; _actuators.control[6] = _manual.aux2; _actuators.control[7] = _manual.aux3; /* lazily publish the setpoint only once available */ _actuators.timestamp = hrt_absolute_time(); if (_actuators_0_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators); } else { /* advertise and publish */ _actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators); } } perf_end(_loop_perf); } warnx("exiting.\n"); _control_task = -1; _exit(0); } int FixedwingAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("fw_att_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&FixedwingAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } int fw_att_control_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: fw_att_control {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (att_control::g_control != nullptr) errx(1, "already running"); att_control::g_control = new FixedwingAttitudeControl; if (att_control::g_control == nullptr) errx(1, "alloc failed"); if (OK != att_control::g_control->start()) { delete att_control::g_control; att_control::g_control = nullptr; err(1, "start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (att_control::g_control == nullptr) errx(1, "not running"); delete att_control::g_control; att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }