/**************************************************************************** * * Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file fw_att_control_main.c * Implementation of a generic attitude controller based on classic orthogonal PIDs. * * @author Lorenz Meier * @author Thomas Gubler * @author Roman Bapst * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Fixedwing attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[]); class FixedwingAttitudeControl { public: /** * Constructor */ FixedwingAttitudeControl(); /** * Destructor, also kills the main task. */ ~FixedwingAttitudeControl(); /** * Start the main task. * * @return OK on success. */ int start(); /** * Task status * * @return true if the mainloop is running */ bool task_running() { return _task_running; } private: bool _task_should_exit; /**< if true, attitude control task should exit */ bool _task_running; /**< if true, task is running in its mainloop */ int _control_task; /**< task handle */ int _att_sub; /**< vehicle attitude subscription */ int _accel_sub; /**< accelerometer subscription */ int _att_sp_sub; /**< vehicle attitude setpoint */ int _attitude_sub; /**< raw rc channels data subscription */ int _airspeed_sub; /**< airspeed subscription */ int _vcontrol_mode_sub; /**< vehicle status subscription */ int _params_sub; /**< notification of parameter updates */ int _manual_sub; /**< notification of manual control updates */ int _global_pos_sub; /**< global position subscription */ int _vehicle_status_sub; /**< vehicle status subscription */ orb_advert_t _rate_sp_pub; /**< rate setpoint publication */ orb_advert_t _attitude_sp_pub; /**< attitude setpoint point */ orb_advert_t _actuators_0_pub; /**< actuator control group 0 setpoint */ orb_advert_t _actuators_2_pub; /**< actuator control group 1 setpoint (Airframe) */ orb_id_t _rates_sp_id; // pointer to correct rates setpoint uORB metadata structure orb_id_t _actuators_id; // pointer to correct actuator controls0 uORB metadata structure struct vehicle_attitude_s _att; /**< vehicle attitude */ struct accel_report _accel; /**< body frame accelerations */ struct vehicle_attitude_setpoint_s _att_sp; /**< vehicle attitude setpoint */ struct vehicle_rates_setpoint_s _rates_sp; /* attitude rates setpoint */ struct manual_control_setpoint_s _manual; /**< r/c channel data */ struct airspeed_s _airspeed; /**< airspeed */ struct vehicle_control_mode_s _vcontrol_mode; /**< vehicle control mode */ struct actuator_controls_s _actuators; /**< actuator control inputs */ struct actuator_controls_s _actuators_airframe; /**< actuator control inputs */ struct vehicle_global_position_s _global_pos; /**< global position */ struct vehicle_status_s _vehicle_status; /**< vehicle status */ perf_counter_t _loop_perf; /**< loop performance counter */ perf_counter_t _nonfinite_input_perf; /**< performance counter for non finite input */ perf_counter_t _nonfinite_output_perf; /**< performance counter for non finite output */ bool _setpoint_valid; /**< flag if the position control setpoint is valid */ bool _debug; /**< if set to true, print debug output */ struct { float tconst; float p_p; float p_d; float p_i; float p_ff; float p_rmax_pos; float p_rmax_neg; float p_integrator_max; float p_roll_feedforward; float r_p; float r_d; float r_i; float r_ff; float r_integrator_max; float r_rmax; float y_p; float y_i; float y_d; float y_ff; float y_roll_feedforward; float y_integrator_max; float y_coordinated_min_speed; float y_rmax; float airspeed_min; float airspeed_trim; float airspeed_max; float trim_roll; float trim_pitch; float trim_yaw; float rollsp_offset_deg; /**< Roll Setpoint Offset in deg */ float pitchsp_offset_deg; /**< Pitch Setpoint Offset in deg */ float rollsp_offset_rad; /**< Roll Setpoint Offset in rad */ float pitchsp_offset_rad; /**< Pitch Setpoint Offset in rad */ float man_roll_max; /**< Max Roll in rad */ float man_pitch_max; /**< Max Pitch in rad */ } _parameters; /**< local copies of interesting parameters */ struct { param_t tconst; param_t p_p; param_t p_d; param_t p_i; param_t p_ff; param_t p_rmax_pos; param_t p_rmax_neg; param_t p_integrator_max; param_t p_roll_feedforward; param_t r_p; param_t r_d; param_t r_i; param_t r_ff; param_t r_integrator_max; param_t r_rmax; param_t y_p; param_t y_i; param_t y_d; param_t y_ff; param_t y_roll_feedforward; param_t y_integrator_max; param_t y_coordinated_min_speed; param_t y_rmax; param_t airspeed_min; param_t airspeed_trim; param_t airspeed_max; param_t trim_roll; param_t trim_pitch; param_t trim_yaw; param_t rollsp_offset_deg; param_t pitchsp_offset_deg; param_t man_roll_max; param_t man_pitch_max; } _parameter_handles; /**< handles for interesting parameters */ ECL_RollController _roll_ctrl; ECL_PitchController _pitch_ctrl; ECL_YawController _yaw_ctrl; /** * Update our local parameter cache. */ int parameters_update(); /** * Update control outputs * */ void control_update(); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for airspeed updates. */ void vehicle_airspeed_poll(); /** * Check for accel updates. */ void vehicle_accel_poll(); /** * Check for set triplet updates. */ void vehicle_setpoint_poll(); /** * Check for global position updates. */ void global_pos_poll(); /** * Check for vehicle status updates. */ void vehicle_status_poll(); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main attitude controller collection task. */ void task_main(); }; namespace att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; FixedwingAttitudeControl *g_control = nullptr; } FixedwingAttitudeControl::FixedwingAttitudeControl() : _task_should_exit(false), _task_running(false), _control_task(-1), /* subscriptions */ _att_sub(-1), _accel_sub(-1), _airspeed_sub(-1), _vcontrol_mode_sub(-1), _params_sub(-1), _manual_sub(-1), _global_pos_sub(-1), _vehicle_status_sub(-1), /* publications */ _rate_sp_pub(-1), _attitude_sp_pub(-1), _actuators_0_pub(-1), _actuators_2_pub(-1), _rates_sp_id(0), _actuators_id(0), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), _nonfinite_input_perf(perf_alloc(PC_COUNT, "fw att control nonfinite input")), _nonfinite_output_perf(perf_alloc(PC_COUNT, "fw att control nonfinite output")), /* states */ _setpoint_valid(false), _debug(false) { /* safely initialize structs */ _att = {}; _accel = {}; _att_sp = {}; _rates_sp = {}; _manual = {}; _airspeed = {}; _vcontrol_mode = {}; _actuators = {}; _actuators_airframe = {}; _global_pos = {}; _vehicle_status = {}; _parameter_handles.tconst = param_find("FW_ATT_TC"); _parameter_handles.p_p = param_find("FW_PR_P"); _parameter_handles.p_i = param_find("FW_PR_I"); _parameter_handles.p_ff = param_find("FW_PR_FF"); _parameter_handles.p_rmax_pos = param_find("FW_P_RMAX_POS"); _parameter_handles.p_rmax_neg = param_find("FW_P_RMAX_NEG"); _parameter_handles.p_integrator_max = param_find("FW_PR_IMAX"); _parameter_handles.p_roll_feedforward = param_find("FW_P_ROLLFF"); _parameter_handles.r_p = param_find("FW_RR_P"); _parameter_handles.r_i = param_find("FW_RR_I"); _parameter_handles.r_ff = param_find("FW_RR_FF"); _parameter_handles.r_integrator_max = param_find("FW_RR_IMAX"); _parameter_handles.r_rmax = param_find("FW_R_RMAX"); _parameter_handles.y_p = param_find("FW_YR_P"); _parameter_handles.y_i = param_find("FW_YR_I"); _parameter_handles.y_ff = param_find("FW_YR_FF"); _parameter_handles.y_integrator_max = param_find("FW_YR_IMAX"); _parameter_handles.y_rmax = param_find("FW_Y_RMAX"); _parameter_handles.airspeed_min = param_find("FW_AIRSPD_MIN"); _parameter_handles.airspeed_trim = param_find("FW_AIRSPD_TRIM"); _parameter_handles.airspeed_max = param_find("FW_AIRSPD_MAX"); _parameter_handles.y_coordinated_min_speed = param_find("FW_YCO_VMIN"); _parameter_handles.trim_roll = param_find("TRIM_ROLL"); _parameter_handles.trim_pitch = param_find("TRIM_PITCH"); _parameter_handles.trim_yaw = param_find("TRIM_YAW"); _parameter_handles.rollsp_offset_deg = param_find("FW_RSP_OFF"); _parameter_handles.pitchsp_offset_deg = param_find("FW_PSP_OFF"); _parameter_handles.man_roll_max = param_find("FW_MAN_R_MAX"); _parameter_handles.man_pitch_max = param_find("FW_MAN_P_MAX"); /* fetch initial parameter values */ parameters_update(); } FixedwingAttitudeControl::~FixedwingAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } perf_free(_loop_perf); perf_free(_nonfinite_input_perf); perf_free(_nonfinite_output_perf); att_control::g_control = nullptr; } int FixedwingAttitudeControl::parameters_update() { param_get(_parameter_handles.tconst, &(_parameters.tconst)); param_get(_parameter_handles.p_p, &(_parameters.p_p)); param_get(_parameter_handles.p_i, &(_parameters.p_i)); param_get(_parameter_handles.p_ff, &(_parameters.p_ff)); param_get(_parameter_handles.p_rmax_pos, &(_parameters.p_rmax_pos)); param_get(_parameter_handles.p_rmax_neg, &(_parameters.p_rmax_neg)); param_get(_parameter_handles.p_integrator_max, &(_parameters.p_integrator_max)); param_get(_parameter_handles.p_roll_feedforward, &(_parameters.p_roll_feedforward)); param_get(_parameter_handles.r_p, &(_parameters.r_p)); param_get(_parameter_handles.r_i, &(_parameters.r_i)); param_get(_parameter_handles.r_ff, &(_parameters.r_ff)); param_get(_parameter_handles.r_integrator_max, &(_parameters.r_integrator_max)); param_get(_parameter_handles.r_rmax, &(_parameters.r_rmax)); param_get(_parameter_handles.y_p, &(_parameters.y_p)); param_get(_parameter_handles.y_i, &(_parameters.y_i)); param_get(_parameter_handles.y_ff, &(_parameters.y_ff)); param_get(_parameter_handles.y_integrator_max, &(_parameters.y_integrator_max)); param_get(_parameter_handles.y_coordinated_min_speed, &(_parameters.y_coordinated_min_speed)); param_get(_parameter_handles.y_rmax, &(_parameters.y_rmax)); param_get(_parameter_handles.airspeed_min, &(_parameters.airspeed_min)); param_get(_parameter_handles.airspeed_trim, &(_parameters.airspeed_trim)); param_get(_parameter_handles.airspeed_max, &(_parameters.airspeed_max)); param_get(_parameter_handles.trim_roll, &(_parameters.trim_roll)); param_get(_parameter_handles.trim_pitch, &(_parameters.trim_pitch)); param_get(_parameter_handles.trim_yaw, &(_parameters.trim_yaw)); param_get(_parameter_handles.rollsp_offset_deg, &(_parameters.rollsp_offset_deg)); param_get(_parameter_handles.pitchsp_offset_deg, &(_parameters.pitchsp_offset_deg)); _parameters.rollsp_offset_rad = math::radians(_parameters.rollsp_offset_deg); _parameters.pitchsp_offset_rad = math::radians(_parameters.pitchsp_offset_deg); param_get(_parameter_handles.man_roll_max, &(_parameters.man_roll_max)); param_get(_parameter_handles.man_pitch_max, &(_parameters.man_pitch_max)); _parameters.man_roll_max = math::radians(_parameters.man_roll_max); _parameters.man_pitch_max = math::radians(_parameters.man_pitch_max); /* pitch control parameters */ _pitch_ctrl.set_time_constant(_parameters.tconst); _pitch_ctrl.set_k_p(_parameters.p_p); _pitch_ctrl.set_k_i(_parameters.p_i); _pitch_ctrl.set_k_ff(_parameters.p_ff); _pitch_ctrl.set_integrator_max(_parameters.p_integrator_max); _pitch_ctrl.set_max_rate_pos(math::radians(_parameters.p_rmax_pos)); _pitch_ctrl.set_max_rate_neg(math::radians(_parameters.p_rmax_neg)); _pitch_ctrl.set_roll_ff(_parameters.p_roll_feedforward); /* roll control parameters */ _roll_ctrl.set_time_constant(_parameters.tconst); _roll_ctrl.set_k_p(_parameters.r_p); _roll_ctrl.set_k_i(_parameters.r_i); _roll_ctrl.set_k_ff(_parameters.r_ff); _roll_ctrl.set_integrator_max(_parameters.r_integrator_max); _roll_ctrl.set_max_rate(math::radians(_parameters.r_rmax)); /* yaw control parameters */ _yaw_ctrl.set_k_p(_parameters.y_p); _yaw_ctrl.set_k_i(_parameters.y_i); _yaw_ctrl.set_k_ff(_parameters.y_ff); _yaw_ctrl.set_integrator_max(_parameters.y_integrator_max); _yaw_ctrl.set_coordinated_min_speed(_parameters.y_coordinated_min_speed); _yaw_ctrl.set_max_rate(math::radians(_parameters.y_rmax)); return OK; } void FixedwingAttitudeControl::vehicle_control_mode_poll() { bool vcontrol_mode_updated; /* Check if vehicle control mode has changed */ orb_check(_vcontrol_mode_sub, &vcontrol_mode_updated); if (vcontrol_mode_updated) { orb_copy(ORB_ID(vehicle_control_mode), _vcontrol_mode_sub, &_vcontrol_mode); } } void FixedwingAttitudeControl::vehicle_manual_poll() { bool manual_updated; /* get pilots inputs */ orb_check(_manual_sub, &manual_updated); if (manual_updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_sub, &_manual); } } void FixedwingAttitudeControl::vehicle_airspeed_poll() { /* check if there is a new position */ bool airspeed_updated; orb_check(_airspeed_sub, &airspeed_updated); if (airspeed_updated) { orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed); } } void FixedwingAttitudeControl::vehicle_accel_poll() { /* check if there is a new position */ bool accel_updated; orb_check(_accel_sub, &accel_updated); if (accel_updated) { orb_copy(ORB_ID(sensor_accel0), _accel_sub, &_accel); } } void FixedwingAttitudeControl::vehicle_setpoint_poll() { /* check if there is a new setpoint */ bool att_sp_updated; orb_check(_att_sp_sub, &att_sp_updated); if (att_sp_updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _att_sp_sub, &_att_sp); _setpoint_valid = true; } } void FixedwingAttitudeControl::global_pos_poll() { /* check if there is a new global position */ bool global_pos_updated; orb_check(_global_pos_sub, &global_pos_updated); if (global_pos_updated) { orb_copy(ORB_ID(vehicle_global_position), _global_pos_sub, &_global_pos); } } void FixedwingAttitudeControl::vehicle_status_poll() { /* check if there is new status information */ bool vehicle_status_updated; orb_check(_vehicle_status_sub, &vehicle_status_updated); if (vehicle_status_updated) { orb_copy(ORB_ID(vehicle_status), _vehicle_status_sub, &_vehicle_status); /* set correct uORB ID, depending on if vehicle is VTOL or not */ if (!_rates_sp_id) { if (_vehicle_status.is_vtol) { _rates_sp_id = ORB_ID(fw_virtual_rates_setpoint); _actuators_id = ORB_ID(actuator_controls_virtual_fw); } else { _rates_sp_id = ORB_ID(vehicle_rates_setpoint); _actuators_id = ORB_ID(actuator_controls_0); } } } } void FixedwingAttitudeControl::task_main_trampoline(int argc, char *argv[]) { att_control::g_control->task_main(); } void FixedwingAttitudeControl::task_main() { /* inform about start */ warnx("Initializing.."); fflush(stdout); /* * do subscriptions */ _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _accel_sub = orb_subscribe(ORB_ID(sensor_accel0)); _airspeed_sub = orb_subscribe(ORB_ID(airspeed)); _vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); _vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status)); /* rate limit vehicle status updates to 5Hz */ orb_set_interval(_vcontrol_mode_sub, 200); /* rate limit attitude control to 50 Hz (with some margin, so 17 ms) */ orb_set_interval(_att_sub, 17); parameters_update(); /* get an initial update for all sensor and status data */ vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); vehicle_status_poll(); /* wakeup source(s) */ struct pollfd fds[2]; /* Setup of loop */ fds[0].fd = _params_sub; fds[0].events = POLLIN; fds[1].fd = _att_sub; fds[1].events = POLLIN; _task_running = true; while (!_task_should_exit) { static int loop_counter = 0; /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); /* update parameters from storage */ parameters_update(); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too large deltaT's */ if (deltaT > 1.0f) deltaT = 0.01f; /* load local copies */ orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att); if (_vehicle_status.is_vtol) { /* vehicle type is VTOL, need to modify attitude! * The following modification to the attitude is vehicle specific and in this case applies * to tail-sitter models !!! * * Since the VTOL airframe is initialized as a multicopter we need to * modify the estimated attitude for the fixed wing operation. * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around * the pitch axis compared to the neutral position of the vehicle in multicopter mode * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix. * Additionally, in order to get the correct sign of the pitch, we need to multiply * the new x axis of the rotation matrix with -1 * * original: modified: * * Rxx Ryx Rzx -Rzx Ryx Rxx * Rxy Ryy Rzy -Rzy Ryy Rxy * Rxz Ryz Rzz -Rzz Ryz Rxz * */ math::Matrix<3, 3> R; //original rotation matrix math::Matrix<3, 3> R_adapted; //modified rotation matrix R.set(_att.R); R_adapted.set(_att.R); /* move z to x */ R_adapted(0, 0) = R(0, 2); R_adapted(1, 0) = R(1, 2); R_adapted(2, 0) = R(2, 2); /* move x to z */ R_adapted(0, 2) = R(0, 0); R_adapted(1, 2) = R(1, 0); R_adapted(2, 2) = R(2, 0); /* change direction of pitch (convert to right handed system) */ R_adapted(0, 0) = -R_adapted(0, 0); R_adapted(1, 0) = -R_adapted(1, 0); R_adapted(2, 0) = -R_adapted(2, 0); math::Vector<3> euler_angles; //adapted euler angles for fixed wing operation euler_angles = R_adapted.to_euler(); /* fill in new attitude data */ _att.roll = euler_angles(0); _att.pitch = euler_angles(1); _att.yaw = euler_angles(2); PX4_R(_att.R, 0, 0) = R_adapted(0, 0); PX4_R(_att.R, 0, 1) = R_adapted(0, 1); PX4_R(_att.R, 0, 2) = R_adapted(0, 2); PX4_R(_att.R, 1, 0) = R_adapted(1, 0); PX4_R(_att.R, 1, 1) = R_adapted(1, 1); PX4_R(_att.R, 1, 2) = R_adapted(1, 2); PX4_R(_att.R, 2, 0) = R_adapted(2, 0); PX4_R(_att.R, 2, 1) = R_adapted(2, 1); PX4_R(_att.R, 2, 2) = R_adapted(2, 2); /* lastly, roll- and yawspeed have to be swaped */ float helper = _att.rollspeed; _att.rollspeed = -_att.yawspeed; _att.yawspeed = helper; } vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); global_pos_poll(); vehicle_status_poll(); /* lock integrator until control is started */ bool lock_integrator; if (_vcontrol_mode.flag_control_attitude_enabled && !_vehicle_status.is_rotary_wing) { lock_integrator = false; } else { lock_integrator = true; } /* Simple handling of failsafe: deploy parachute if failsafe is on */ if (_vcontrol_mode.flag_control_termination_enabled) { _actuators_airframe.control[7] = 1.0f; // warnx("_actuators_airframe.control[1] = 1.0f;"); } else { _actuators_airframe.control[7] = 0.0f; // warnx("_actuators_airframe.control[1] = -1.0f;"); } /* decide if in stabilized or full manual control */ if (_vcontrol_mode.flag_control_attitude_enabled) { /* scale around tuning airspeed */ float airspeed; /* if airspeed is not updating, we assume the normal average speed */ if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s) || hrt_elapsed_time(&_airspeed.timestamp) > 1e6) { airspeed = _parameters.airspeed_trim; if (nonfinite) { perf_count(_nonfinite_input_perf); } } else { /* prevent numerical drama by requiring 0.5 m/s minimal speed */ airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s); } /* * For scaling our actuators using anything less than the min (close to stall) * speed doesn't make any sense - its the strongest reasonable deflection we * want to do in flight and its the baseline a human pilot would choose. * * Forcing the scaling to this value allows reasonable handheld tests. */ float airspeed_scaling = _parameters.airspeed_trim / ((airspeed < _parameters.airspeed_min) ? _parameters.airspeed_min : airspeed); float roll_sp = _parameters.rollsp_offset_rad; float pitch_sp = _parameters.pitchsp_offset_rad; float yaw_manual = 0.0f; float throttle_sp = 0.0f; /* Read attitude setpoint from uorb if * - velocity control or position control is enabled (pos controller is running) * - manual control is disabled (another app may send the setpoint, but it should * for sure not be set from the remote control values) */ if (_vcontrol_mode.flag_control_auto_enabled || !_vcontrol_mode.flag_control_manual_enabled) { /* read in attitude setpoint from attitude setpoint uorb topic */ roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad; pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else if (_vcontrol_mode.flag_control_velocity_enabled) { /* * Velocity should be controlled and manual is enabled. */ roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll) + _parameters.rollsp_offset_rad; pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else { /* * Scale down roll and pitch as the setpoints are radians * and a typical remote can only do around 45 degrees, the mapping is * -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch) * * With this mapping the stick angle is a 1:1 representation of * the commanded attitude. * * The trim gets subtracted here from the manual setpoint to get * the intended attitude setpoint. Later, after the rate control step the * trim is added again to the control signal. */ roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll) + _parameters.rollsp_offset_rad; pitch_sp = -(_manual.x * _parameters.man_pitch_max - _parameters.trim_pitch) + _parameters.pitchsp_offset_rad; /* allow manual control of rudder deflection */ yaw_manual = _manual.r; throttle_sp = _manual.z; _actuators.control[4] = _manual.flaps; /* * in manual mode no external source should / does emit attitude setpoints. * emit the manual setpoint here to allow attitude controller tuning * in attitude control mode. */ struct vehicle_attitude_setpoint_s att_sp; att_sp.timestamp = hrt_absolute_time(); att_sp.roll_body = roll_sp; att_sp.pitch_body = pitch_sp; att_sp.yaw_body = 0.0f - _parameters.trim_yaw; att_sp.thrust = throttle_sp; /* lazily publish the setpoint only once available */ if (_attitude_sp_pub > 0 && !_vehicle_status.is_rotary_wing) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_attitude_setpoint), _attitude_sp_pub, &att_sp); } else if (_attitude_sp_pub < 0 && !_vehicle_status.is_rotary_wing) { /* advertise and publish */ _attitude_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp); } } /* If the aircraft is on ground reset the integrators */ if (_vehicle_status.condition_landed || _vehicle_status.is_rotary_wing) { _roll_ctrl.reset_integrator(); _pitch_ctrl.reset_integrator(); _yaw_ctrl.reset_integrator(); } /* Prepare speed_body_u and speed_body_w */ float speed_body_u = 0.0f; float speed_body_v = 0.0f; float speed_body_w = 0.0f; if(_att.R_valid) { speed_body_u = PX4_R(_att.R, 0, 0) * _global_pos.vel_n + PX4_R(_att.R, 1, 0) * _global_pos.vel_e + PX4_R(_att.R, 2, 0) * _global_pos.vel_d; speed_body_v = PX4_R(_att.R, 0, 1) * _global_pos.vel_n + PX4_R(_att.R, 1, 1) * _global_pos.vel_e + PX4_R(_att.R, 2, 1) * _global_pos.vel_d; speed_body_w = PX4_R(_att.R, 0, 2) * _global_pos.vel_n + PX4_R(_att.R, 1, 2) * _global_pos.vel_e + PX4_R(_att.R, 2, 2) * _global_pos.vel_d; } else { if (_debug && loop_counter % 10 == 0) { warnx("Did not get a valid R\n"); } } /* Prepare data for attitude controllers */ struct ECL_ControlData control_input = {}; control_input.roll = _att.roll; control_input.pitch = _att.pitch; control_input.yaw = _att.yaw; control_input.roll_rate = _att.rollspeed; control_input.pitch_rate = _att.pitchspeed; control_input.yaw_rate = _att.yawspeed; control_input.speed_body_u = speed_body_u; control_input.speed_body_v = speed_body_v; control_input.speed_body_w = speed_body_w; control_input.roll_setpoint = roll_sp; control_input.pitch_setpoint = pitch_sp; control_input.airspeed_min = _parameters.airspeed_min; control_input.airspeed_max = _parameters.airspeed_max; control_input.airspeed = airspeed; control_input.scaler = airspeed_scaling; control_input.lock_integrator = lock_integrator; /* Run attitude controllers */ if (isfinite(roll_sp) && isfinite(pitch_sp)) { _roll_ctrl.control_attitude(control_input); _pitch_ctrl.control_attitude(control_input); _yaw_ctrl.control_attitude(control_input); //runs last, because is depending on output of roll and pitch attitude /* Update input data for rate controllers */ control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate(); control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate(); control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate(); /* Run attitude RATE controllers which need the desired attitudes from above, add trim */ float roll_u = _roll_ctrl.control_bodyrate(control_input); _actuators.control[0] = (isfinite(roll_u)) ? roll_u + _parameters.trim_roll : _parameters.trim_roll; if (!isfinite(roll_u)) { _roll_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("roll_u %.4f", (double)roll_u); } } float pitch_u = _pitch_ctrl.control_bodyrate(control_input); _actuators.control[1] = (isfinite(pitch_u)) ? pitch_u + _parameters.trim_pitch : _parameters.trim_pitch; if (!isfinite(pitch_u)) { _pitch_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f," " airspeed %.4f, airspeed_scaling %.4f," " roll_sp %.4f, pitch_sp %.4f," " _roll_ctrl.get_desired_rate() %.4f," " _pitch_ctrl.get_desired_rate() %.4f" " att_sp.roll_body %.4f", (double)pitch_u, (double)_yaw_ctrl.get_desired_rate(), (double)airspeed, (double)airspeed_scaling, (double)roll_sp, (double)pitch_sp, (double)_roll_ctrl.get_desired_rate(), (double)_pitch_ctrl.get_desired_rate(), (double)_att_sp.roll_body); } } float yaw_u = _yaw_ctrl.control_bodyrate(control_input); _actuators.control[2] = (isfinite(yaw_u)) ? yaw_u + _parameters.trim_yaw : _parameters.trim_yaw; /* add in manual rudder control */ _actuators.control[2] += yaw_manual; if (!isfinite(yaw_u)) { _yaw_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("yaw_u %.4f", (double)yaw_u); } } /* throttle passed through if it is finite and if no engine failure was * detected */ _actuators.control[3] = (isfinite(throttle_sp) && !(_vehicle_status.engine_failure || _vehicle_status.engine_failure_cmd)) ? throttle_sp : 0.0f; if (!isfinite(throttle_sp)) { if (_debug && loop_counter % 10 == 0) { warnx("throttle_sp %.4f", (double)throttle_sp); } } } else { perf_count(_nonfinite_input_perf); if (_debug && loop_counter % 10 == 0) { warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f", (double)roll_sp, (double)pitch_sp); } } /* * Lazily publish the rate setpoint (for analysis, the actuators are published below) * only once available */ _rates_sp.roll = _roll_ctrl.get_desired_rate(); _rates_sp.pitch = _pitch_ctrl.get_desired_rate(); _rates_sp.yaw = _yaw_ctrl.get_desired_rate(); _rates_sp.timestamp = hrt_absolute_time(); if (_rate_sp_pub > 0) { /* publish the attitude rates setpoint */ orb_publish(_rates_sp_id, _rate_sp_pub, &_rates_sp); } else if (_rates_sp_id) { /* advertise the attitude rates setpoint */ _rate_sp_pub = orb_advertise(_rates_sp_id, &_rates_sp); } } else { /* manual/direct control */ _actuators.control[0] = _manual.y; _actuators.control[1] = -_manual.x; _actuators.control[2] = _manual.r; _actuators.control[3] = _manual.z; _actuators.control[4] = _manual.flaps; } _actuators.control[5] = _manual.aux1; _actuators.control[6] = _manual.aux2; _actuators.control[7] = _manual.aux3; /* lazily publish the setpoint only once available */ _actuators.timestamp = hrt_absolute_time(); _actuators.timestamp_sample = _att.timestamp; _actuators_airframe.timestamp = hrt_absolute_time(); _actuators_airframe.timestamp_sample = _att.timestamp; /* publish the actuator controls */ if (_actuators_0_pub > 0) { orb_publish(_actuators_id, _actuators_0_pub, &_actuators); } else if (_actuators_id) { _actuators_0_pub= orb_advertise(_actuators_id, &_actuators); } if (_actuators_2_pub > 0) { /* publish the actuator controls*/ orb_publish(ORB_ID(actuator_controls_2), _actuators_2_pub, &_actuators_airframe); } else { /* advertise and publish */ _actuators_2_pub = orb_advertise(ORB_ID(actuator_controls_2), &_actuators_airframe); } } loop_counter++; perf_end(_loop_perf); } warnx("exiting.\n"); _control_task = -1; _task_running = false; _exit(0); } int FixedwingAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("fw_att_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&FixedwingAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } int fw_att_control_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: fw_att_control {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (att_control::g_control != nullptr) errx(1, "already running"); att_control::g_control = new FixedwingAttitudeControl; if (att_control::g_control == nullptr) errx(1, "alloc failed"); if (OK != att_control::g_control->start()) { delete att_control::g_control; att_control::g_control = nullptr; err(1, "start failed"); } /* avoid memory fragmentation by not exiting start handler until the task has fully started */ while (att_control::g_control == nullptr || !att_control::g_control->task_running()) { usleep(50000); printf("."); fflush(stdout); } printf("\n"); exit(0); } if (!strcmp(argv[1], "stop")) { if (att_control::g_control == nullptr) errx(1, "not running"); delete att_control::g_control; att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }