/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_cmplx_conj_q15.c * * Description: Q15 complex conjugate. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_conj * @{ */ /** * @brief Q15 complex conjugate. * @param *pSrc points to the input vector * @param *pDst points to the output vector * @param numSamples number of complex samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. */ void arm_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples) { #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ q31_t in1, in2, in3, in4; q31_t zero = 0; /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ in1 = *__SIMD32(pSrc)++; in2 = *__SIMD32(pSrc)++; in3 = *__SIMD32(pSrc)++; in4 = *__SIMD32(pSrc)++; #ifndef ARM_MATH_BIG_ENDIAN in1 = __QASX(zero, in1); in2 = __QASX(zero, in2); in3 = __QASX(zero, in3); in4 = __QASX(zero, in4); #else in1 = __QSAX(zero, in1); in2 = __QSAX(zero, in2); in3 = __QSAX(zero, in3); in4 = __QSAX(zero, in4); #endif // #ifndef ARM_MATH_BIG_ENDIAN in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16); in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16); in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16); in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16); *__SIMD32(pDst)++ = in1; *__SIMD32(pDst)++ = in2; *__SIMD32(pDst)++ = in3; *__SIMD32(pDst)++ = in4; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; while(blkCnt > 0u) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; *pDst++ = __SSAT(-*pSrc++, 16); /* Decrement the loop counter */ blkCnt--; } #else q15_t in; /* Run the below code for Cortex-M0 */ while(numSamples > 0u) { /* realOut + j (imagOut) = realIn+ j (-1) imagIn */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; in = *pSrc++; *pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in; /* Decrement the loop counter */ numSamples--; } #endif /* #ifndef ARM_MATH_CM0 */ } /** * @} end of cmplx_conj group */