/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_fir_lattice_q31.c * * Description: Q31 FIR lattice filter processing function. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR_Lattice * @{ */ /** * @brief Processing function for the Q31 FIR lattice filter. * @param[in] *S points to an instance of the Q31 FIR lattice structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data * @param[in] blockSize number of samples to process. * @return none. * * @details * Scaling and Overflow Behavior: * In order to avoid overflows the input signal must be scaled down by 2*log2(numStages) bits. */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t *pState; /* State pointer */ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *px; /* temporary state pointer */ q31_t *pk; /* temporary coefficient pointer */ q31_t fcurr1, fnext1, gcurr1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */ q31_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */ uint32_t numStages = S->numStages; /* Length of the filter */ uint32_t blkCnt, stageCnt; /* temporary variables for counts */ q31_t k; pState = &S->pState[0]; blkCnt = blockSize >> 1u; /* First part of the processing with loop unrolling. Compute 2 outputs at a time. a second loop below computes the remaining 1 sample. */ while(blkCnt > 0u) { /* f0(n) = x(n) */ fcurr1 = *pSrc++; /* f0(n) = x(n) */ fcurr2 = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* read g0(n - 1) from state buffer */ gcurr1 = *px; /* Read the reflection coefficient */ k = *pk++; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32); fnext1 = fcurr1 + (fnext1 << 1u); gnext1 = gcurr1 + (gnext1 << 1u); /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext2 = (q31_t) (((q63_t) fcurr1 * k) >> 32); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32); fnext2 = fcurr2 + (fnext2 << 1u); gnext2 = fcurr1 + (gnext2 << 1u); /* save g1(n) in state buffer */ *px++ = fcurr2; /* f1(n) is saved in fcurr1 for next stage processing */ fcurr1 = fnext1; fcurr2 = fnext2; stageCnt = (numStages - 1u); /* stage loop */ while(stageCnt > 0u) { /* Read the reflection coefficient */ k = *pk++; /* read g2(n) from state buffer */ gcurr1 = *px; /* save g1(n) in state buffer */ *px++ = gnext2; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32); fnext2 = (q31_t) (((q63_t) gnext1 * k) >> 32); fnext1 = fcurr1 + (fnext1 << 1u); fnext2 = fcurr2 + (fnext2 << 1u); /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32); gnext2 = gnext1 + (gnext2 << 1u); /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32); gnext1 = gcurr1 + (gnext1 << 1u); /* f1(n) is saved in fcurr1 for next stage processing */ fcurr1 = fnext1; fcurr2 = fnext2; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = fcurr1; *pDst++ = fcurr2; blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x2u; while(blkCnt > 0u) { /* f0(n) = x(n) */ fcurr1 = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* read g0(n - 1) from state buffer */ gcurr1 = *px; /* Read the reflection coefficient */ k = *pk++; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32); fnext1 = fcurr1 + (fnext1 << 1u); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32); gnext1 = gcurr1 + (gnext1 << 1u); /* save g1(n) in state buffer */ *px++ = fcurr1; /* f1(n) is saved in fcurr1 for next stage processing */ fcurr1 = fnext1; stageCnt = (numStages - 1u); /* stage loop */ while(stageCnt > 0u) { /* Read the reflection coefficient */ k = *pk++; /* read g2(n) from state buffer */ gcurr1 = *px; /* save g1(n) in state buffer */ *px++ = gnext1; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32); fnext1 = fcurr1 + (fnext1 << 1u); /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32); gnext1 = gcurr1 + (gnext1 << 1u); /* f1(n) is saved in fcurr1 for next stage processing */ fcurr1 = fnext1; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = fcurr1; blkCnt--; } } #else /* Run the below code for Cortex-M0 */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t *pState; /* State pointer */ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *px; /* temporary state pointer */ q31_t *pk; /* temporary coefficient pointer */ q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */ uint32_t numStages = S->numStages; /* Length of the filter */ uint32_t blkCnt, stageCnt; /* temporary variables for counts */ pState = &S->pState[0]; blkCnt = blockSize; while(blkCnt > 0u) { /* f0(n) = x(n) */ fcurr = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* read g0(n-1) from state buffer */ gcurr = *px; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr; /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr; /* save g1(n) in state buffer */ *px++ = fcurr; /* f1(n) is saved in fcurr1 for next stage processing */ fcurr = fnext; stageCnt = (numStages - 1u); /* stage loop */ while(stageCnt > 0u) { /* read g2(n) from state buffer */ gcurr = *px; /* save g1(n) in state buffer */ *px++ = gnext; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr; /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr; /* f1(n) is saved in fcurr1 for next stage processing */ fcurr = fnext; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = fcurr; blkCnt--; } } #endif /* #ifndef ARM_MATH_CM0 */ /** * @} end of FIR_Lattice group */