/**************************************************************************** * * Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mavlink_main.cpp * MAVLink 1.0 protocol implementation. * * @author Lorenz Meier * @author Julian Oes * @author Anton Babushkin */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* isinf / isnan checks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mavlink_bridge_header.h" #include "mavlink_main.h" #include "mavlink_messages.h" #include "mavlink_receiver.h" #include "mavlink_rate_limiter.h" #ifndef MAVLINK_CRC_EXTRA #error MAVLINK_CRC_EXTRA has to be defined on PX4 systems #endif /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; #define DEFAULT_DEVICE_NAME "/dev/ttyS1" #define MAX_DATA_RATE 20000 // max data rate in bytes/s #define MAIN_LOOP_DELAY 10000 // 100 Hz @ 1000 bytes/s data rate #define TX_BUFFER_GAP MAVLINK_MAX_PACKET_LEN static Mavlink *_mavlink_instances = nullptr; /* TODO: if this is a class member it crashes */ static struct file_operations fops; static const uint8_t mavlink_message_lengths[256] = MAVLINK_MESSAGE_LENGTHS; static const uint8_t mavlink_message_crcs[256] = MAVLINK_MESSAGE_CRCS; /** * mavlink app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int mavlink_main(int argc, char *argv[]); extern mavlink_system_t mavlink_system; static void usage(void); Mavlink::Mavlink() : _device_name(DEFAULT_DEVICE_NAME), _task_should_exit(false), next(nullptr), _instance_id(0), _mavlink_fd(-1), _task_running(false), _hil_enabled(false), _use_hil_gps(false), _forward_externalsp(false), _is_usb_uart(false), _wait_to_transmit(false), _received_messages(false), _main_loop_delay(1000), _subscriptions(nullptr), _streams(nullptr), _mission_manager(nullptr), _parameters_manager(nullptr), _mode(MAVLINK_MODE_NORMAL), _channel(MAVLINK_COMM_0), _logbuffer {}, _total_counter(0), _receive_thread {}, _verbose(false), _forwarding_on(false), _passing_on(false), _ftp_on(false), _uart_fd(-1), _baudrate(57600), _datarate(1000), _datarate_events(500), _rate_mult(1.0f), _mavlink_param_queue_index(0), mavlink_link_termination_allowed(false), _subscribe_to_stream(nullptr), _subscribe_to_stream_rate(0.0f), _flow_control_enabled(true), _last_write_success_time(0), _last_write_try_time(0), _bytes_tx(0), _bytes_txerr(0), _bytes_rx(0), _bytes_timestamp(0), _rate_tx(0.0f), _rate_txerr(0.0f), _rate_rx(0.0f), _rstatus {}, _message_buffer {}, _message_buffer_mutex {}, _send_mutex {}, _param_initialized(false), _param_system_id(0), _param_component_id(0), _param_system_type(0), _param_use_hil_gps(0), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "mavlink_el")), _txerr_perf(perf_alloc(PC_COUNT, "mavlink_txe")) { fops.ioctl = (int (*)(file *, int, long unsigned int))&mavlink_dev_ioctl; _instance_id = Mavlink::instance_count(); /* set channel according to instance id */ switch (_instance_id) { case 0: _channel = MAVLINK_COMM_0; break; case 1: _channel = MAVLINK_COMM_1; break; case 2: _channel = MAVLINK_COMM_2; break; case 3: _channel = MAVLINK_COMM_3; break; #ifdef MAVLINK_COMM_4 case 4: _channel = MAVLINK_COMM_4; break; #endif #ifdef MAVLINK_COMM_5 case 5: _channel = MAVLINK_COMM_5; break; #endif #ifdef MAVLINK_COMM_6 case 6: _channel = MAVLINK_COMM_6; break; #endif default: errx(1, "instance ID is out of range"); break; } _rstatus.type = TELEMETRY_STATUS_RADIO_TYPE_GENERIC; } Mavlink::~Mavlink() { perf_free(_loop_perf); perf_free(_txerr_perf); if (_task_running) { /* task wakes up every 10ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { //TODO store main task handle in Mavlink instance to allow killing task //task_delete(_mavlink_task); break; } } while (_task_running); } LL_DELETE(_mavlink_instances, this); } void Mavlink::count_txerr() { perf_count(_txerr_perf); } void Mavlink::set_mode(enum MAVLINK_MODE mode) { _mode = mode; } int Mavlink::instance_count() { unsigned inst_index = 0; Mavlink *inst; LL_FOREACH(::_mavlink_instances, inst) { inst_index++; } return inst_index; } Mavlink * Mavlink::get_instance(unsigned instance) { Mavlink *inst; unsigned inst_index = 0; LL_FOREACH(::_mavlink_instances, inst) { if (instance == inst_index) { return inst; } inst_index++; } return nullptr; } Mavlink * Mavlink::get_instance_for_device(const char *device_name) { Mavlink *inst; LL_FOREACH(::_mavlink_instances, inst) { if (strcmp(inst->_device_name, device_name) == 0) { return inst; } } return nullptr; } int Mavlink::destroy_all_instances() { /* start deleting from the end */ Mavlink *inst_to_del = nullptr; Mavlink *next_inst = ::_mavlink_instances; unsigned iterations = 0; warnx("waiting for instances to stop"); while (next_inst != nullptr) { inst_to_del = next_inst; next_inst = inst_to_del->next; /* set flag to stop thread and wait for all threads to finish */ inst_to_del->_task_should_exit = true; while (inst_to_del->_task_running) { printf("."); fflush(stdout); usleep(10000); iterations++; if (iterations > 1000) { warnx("ERROR: Couldn't stop all mavlink instances."); return ERROR; } } } printf("\n"); warnx("all instances stopped"); return OK; } int Mavlink::get_status_all_instances() { Mavlink *inst = ::_mavlink_instances; unsigned iterations = 0; while (inst != nullptr) { printf("\ninstance #%u:\n", iterations); inst->display_status(); /* move on */ inst = inst->next; iterations++; } /* return an error if there are no instances */ return (iterations == 0); } bool Mavlink::instance_exists(const char *device_name, Mavlink *self) { Mavlink *inst = ::_mavlink_instances; while (inst != nullptr) { /* don't compare with itself */ if (inst != self && !strcmp(device_name, inst->_device_name)) { return true; } inst = inst->next; } return false; } void Mavlink::forward_message(const mavlink_message_t *msg, Mavlink *self) { Mavlink *inst; LL_FOREACH(_mavlink_instances, inst) { if (inst != self) { /* if not in normal mode, we are an onboard link * onboard links should only pass on messages from the same system ID */ if (!(self->_mode != MAVLINK_MODE_NORMAL && msg->sysid != mavlink_system.sysid)) { inst->pass_message(msg); } } } } int Mavlink::get_uart_fd(unsigned index) { Mavlink *inst = get_instance(index); if (inst) { return inst->get_uart_fd(); } return -1; } int Mavlink::get_uart_fd() { return _uart_fd; } int Mavlink::get_instance_id() { return _instance_id; } mavlink_channel_t Mavlink::get_channel() { return _channel; } /**************************************************************************** * MAVLink text message logger ****************************************************************************/ int Mavlink::mavlink_dev_ioctl(struct file *filep, int cmd, unsigned long arg) { switch (cmd) { case (int)MAVLINK_IOC_SEND_TEXT_INFO: case (int)MAVLINK_IOC_SEND_TEXT_CRITICAL: case (int)MAVLINK_IOC_SEND_TEXT_EMERGENCY: { const char *txt = (const char *)arg; struct mavlink_logmessage msg; strncpy(msg.text, txt, sizeof(msg.text)); switch (cmd) { case MAVLINK_IOC_SEND_TEXT_INFO: msg.severity = MAV_SEVERITY_INFO; break; case MAVLINK_IOC_SEND_TEXT_CRITICAL: msg.severity = MAV_SEVERITY_CRITICAL; break; case MAVLINK_IOC_SEND_TEXT_EMERGENCY: msg.severity = MAV_SEVERITY_EMERGENCY; break; default: msg.severity = MAV_SEVERITY_INFO; break; } Mavlink *inst; LL_FOREACH(_mavlink_instances, inst) { if (!inst->_task_should_exit) { mavlink_logbuffer_write(&inst->_logbuffer, &msg); inst->_total_counter++; } } return OK; } default: return ENOTTY; } } void Mavlink::mavlink_update_system(void) { if (!_param_initialized) { _param_system_id = param_find("MAV_SYS_ID"); _param_component_id = param_find("MAV_COMP_ID"); _param_system_type = param_find("MAV_TYPE"); _param_use_hil_gps = param_find("MAV_USEHILGPS"); _param_forward_externalsp = param_find("MAV_FWDEXTSP"); } /* update system and component id */ int32_t system_id; param_get(_param_system_id, &system_id); int32_t component_id; param_get(_param_component_id, &component_id); /* only allow system ID and component ID updates * after reboot - not during operation */ if (!_param_initialized) { if (system_id > 0 && system_id < 255) { mavlink_system.sysid = system_id; } if (component_id > 0 && component_id < 255) { mavlink_system.compid = component_id; } _param_initialized = true; } /* warn users that they need to reboot to take this * into effect */ if (system_id != mavlink_system.sysid) { send_statustext_critical("Save params and reboot to change SYSID"); } if (component_id != mavlink_system.compid) { send_statustext_critical("Save params and reboot to change COMPID"); } int32_t system_type; param_get(_param_system_type, &system_type); if (system_type >= 0 && system_type < MAV_TYPE_ENUM_END) { mavlink_system.type = system_type; } int32_t use_hil_gps; param_get(_param_use_hil_gps, &use_hil_gps); _use_hil_gps = (bool)use_hil_gps; int32_t forward_externalsp; param_get(_param_forward_externalsp, &forward_externalsp); _forward_externalsp = (bool)forward_externalsp; } int Mavlink::get_system_id() { return mavlink_system.sysid; } int Mavlink::get_component_id() { return mavlink_system.compid; } int Mavlink::mavlink_open_uart(int baud, const char *uart_name, struct termios *uart_config_original, bool *is_usb) { /* process baud rate */ int speed; switch (baud) { case 0: speed = B0; break; case 50: speed = B50; break; case 75: speed = B75; break; case 110: speed = B110; break; case 134: speed = B134; break; case 150: speed = B150; break; case 200: speed = B200; break; case 300: speed = B300; break; case 600: speed = B600; break; case 1200: speed = B1200; break; case 1800: speed = B1800; break; case 2400: speed = B2400; break; case 4800: speed = B4800; break; case 9600: speed = B9600; break; case 19200: speed = B19200; break; case 38400: speed = B38400; break; case 57600: speed = B57600; break; case 115200: speed = B115200; break; case 230400: speed = B230400; break; case 460800: speed = B460800; break; case 921600: speed = B921600; break; default: warnx("ERROR: Unsupported baudrate: %d\n\tsupported examples:\n\t9600, 19200, 38400, 57600\t\n115200\n230400\n460800\n921600\n", baud); return -EINVAL; } /* open uart */ _uart_fd = open(uart_name, O_RDWR | O_NOCTTY); if (_uart_fd < 0) { return _uart_fd; } /* Try to set baud rate */ struct termios uart_config; int termios_state; *is_usb = false; /* Back up the original uart configuration to restore it after exit */ if ((termios_state = tcgetattr(_uart_fd, uart_config_original)) < 0) { warnx("ERR GET CONF %s: %d\n", uart_name, termios_state); close(_uart_fd); return -1; } /* Fill the struct for the new configuration */ tcgetattr(_uart_fd, &uart_config); /* Clear ONLCR flag (which appends a CR for every LF) */ uart_config.c_oflag &= ~ONLCR; /* USB serial is indicated by /dev/ttyACM0*/ if (strcmp(uart_name, "/dev/ttyACM0") != OK && strcmp(uart_name, "/dev/ttyACM1") != OK) { /* Set baud rate */ if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) { warnx("ERR SET BAUD %s: %d\n", uart_name, termios_state); close(_uart_fd); return -1; } } if ((termios_state = tcsetattr(_uart_fd, TCSANOW, &uart_config)) < 0) { warnx("ERR SET CONF %s\n", uart_name); close(_uart_fd); return -1; } if (!_is_usb_uart) { /* * Setup hardware flow control. If the port has no RTS pin this call will fail, * which is not an issue, but requires a separate call so we can fail silently. */ (void)tcgetattr(_uart_fd, &uart_config); uart_config.c_cflag |= CRTS_IFLOW; (void)tcsetattr(_uart_fd, TCSANOW, &uart_config); /* setup output flow control */ if (enable_flow_control(true)) { warnx("hardware flow control not supported"); } } else { _flow_control_enabled = false; } return _uart_fd; } int Mavlink::enable_flow_control(bool enabled) { // We can't do this on USB - skip if (_is_usb_uart) { return OK; } struct termios uart_config; int ret = tcgetattr(_uart_fd, &uart_config); if (enabled) { uart_config.c_cflag |= CRTSCTS; } else { uart_config.c_cflag &= ~CRTSCTS; } ret = tcsetattr(_uart_fd, TCSANOW, &uart_config); if (!ret) { _flow_control_enabled = enabled; } return ret; } int Mavlink::set_hil_enabled(bool hil_enabled) { int ret = OK; /* enable HIL */ if (hil_enabled && !_hil_enabled) { _hil_enabled = true; configure_stream("HIL_CONTROLS", 200.0f); } /* disable HIL */ if (!hil_enabled && _hil_enabled) { _hil_enabled = false; configure_stream("HIL_CONTROLS", 0.0f); } else { ret = ERROR; } return ret; } unsigned Mavlink::get_free_tx_buf() { /* * Check if the OS buffer is full and disable HW * flow control if it continues to be full */ int buf_free = 0; (void) ioctl(_uart_fd, FIONWRITE, (unsigned long)&buf_free); if (get_flow_control_enabled() && buf_free < TX_BUFFER_GAP) { /* Disable hardware flow control: * if no successful write since a defined time * and if the last try was not the last successful write */ if (_last_write_try_time != 0 && hrt_elapsed_time(&_last_write_success_time) > 500 * 1000UL && _last_write_success_time != _last_write_try_time) { warnx("DISABLING HARDWARE FLOW CONTROL"); enable_flow_control(false); } } return buf_free; } void Mavlink::send_message(const uint8_t msgid, const void *msg) { /* If the wait until transmit flag is on, only transmit after we've received messages. Otherwise, transmit all the time. */ if (!should_transmit()) { return; } pthread_mutex_lock(&_send_mutex); int buf_free = get_free_tx_buf(); uint8_t payload_len = mavlink_message_lengths[msgid]; unsigned packet_len = payload_len + MAVLINK_NUM_NON_PAYLOAD_BYTES; _last_write_try_time = hrt_absolute_time(); /* check if there is space in the buffer, let it overflow else */ if ((buf_free < TX_BUFFER_GAP) || (buf_free < packet_len)) { /* no enough space in buffer to send */ count_txerr(); count_txerrbytes(packet_len); pthread_mutex_unlock(&_send_mutex); return; } uint8_t buf[MAVLINK_MAX_PACKET_LEN]; /* header */ buf[0] = MAVLINK_STX; buf[1] = payload_len; /* use mavlink's internal counter for the TX seq */ buf[2] = mavlink_get_channel_status(_channel)->current_tx_seq++; buf[3] = mavlink_system.sysid; buf[4] = mavlink_system.compid; buf[5] = msgid; /* payload */ memcpy(&buf[MAVLINK_NUM_HEADER_BYTES], msg, payload_len); /* checksum */ uint16_t checksum; crc_init(&checksum); crc_accumulate_buffer(&checksum, (const char *) &buf[1], MAVLINK_CORE_HEADER_LEN + payload_len); crc_accumulate(mavlink_message_crcs[msgid], &checksum); buf[MAVLINK_NUM_HEADER_BYTES + payload_len] = (uint8_t)(checksum & 0xFF); buf[MAVLINK_NUM_HEADER_BYTES + payload_len + 1] = (uint8_t)(checksum >> 8); /* send message to UART */ ssize_t ret = write(_uart_fd, buf, packet_len); if (ret != (int) packet_len) { count_txerr(); count_txerrbytes(packet_len); } else { _last_write_success_time = _last_write_try_time; count_txbytes(packet_len); } pthread_mutex_unlock(&_send_mutex); } void Mavlink::resend_message(mavlink_message_t *msg) { /* If the wait until transmit flag is on, only transmit after we've received messages. Otherwise, transmit all the time. */ if (!should_transmit()) { return; } pthread_mutex_lock(&_send_mutex); int buf_free = get_free_tx_buf(); _last_write_try_time = hrt_absolute_time(); unsigned packet_len = msg->len + MAVLINK_NUM_NON_PAYLOAD_BYTES; /* check if there is space in the buffer, let it overflow else */ if (buf_free < TX_BUFFER_GAP) { /* no enough space in buffer to send */ count_txerr(); count_txerrbytes(packet_len); pthread_mutex_unlock(&_send_mutex); return; } uint8_t buf[MAVLINK_MAX_PACKET_LEN]; /* header and payload */ memcpy(&buf[0], &msg->magic, MAVLINK_NUM_HEADER_BYTES + msg->len); /* checksum */ buf[MAVLINK_NUM_HEADER_BYTES + msg->len] = (uint8_t)(msg->checksum & 0xFF); buf[MAVLINK_NUM_HEADER_BYTES + msg->len + 1] = (uint8_t)(msg->checksum >> 8); /* send message to UART */ ssize_t ret = write(_uart_fd, buf, packet_len); if (ret != (int) packet_len) { count_txerr(); count_txerrbytes(packet_len); } else { _last_write_success_time = _last_write_try_time; count_txbytes(packet_len); } pthread_mutex_unlock(&_send_mutex); } void Mavlink::handle_message(const mavlink_message_t *msg) { /* handle packet with mission manager */ _mission_manager->handle_message(msg); /* handle packet with parameter component */ _parameters_manager->handle_message(msg); if (get_forwarding_on()) { /* forward any messages to other mavlink instances */ Mavlink::forward_message(msg, this); } } void Mavlink::send_statustext_info(const char *string) { send_statustext(MAV_SEVERITY_INFO, string); } void Mavlink::send_statustext_critical(const char *string) { send_statustext(MAV_SEVERITY_CRITICAL, string); } void Mavlink::send_statustext_emergency(const char *string) { send_statustext(MAV_SEVERITY_EMERGENCY, string); } void Mavlink::send_statustext(unsigned char severity, const char *string) { struct mavlink_logmessage logmsg; strncpy(logmsg.text, string, sizeof(logmsg.text)); logmsg.severity = severity; mavlink_logbuffer_write(&_logbuffer, &logmsg); } MavlinkOrbSubscription *Mavlink::add_orb_subscription(const orb_id_t topic) { /* check if already subscribed to this topic */ MavlinkOrbSubscription *sub; LL_FOREACH(_subscriptions, sub) { if (sub->get_topic() == topic) { /* already subscribed */ return sub; } } /* add new subscription */ MavlinkOrbSubscription *sub_new = new MavlinkOrbSubscription(topic); LL_APPEND(_subscriptions, sub_new); return sub_new; } unsigned int Mavlink::interval_from_rate(float rate) { return (rate > 0.0f) ? (1000000.0f / rate) : 0; } int Mavlink::configure_stream(const char *stream_name, const float rate) { /* calculate interval in us, 0 means disabled stream */ unsigned int interval = interval_from_rate(rate); /* search if stream exists */ MavlinkStream *stream; LL_FOREACH(_streams, stream) { if (strcmp(stream_name, stream->get_name()) == 0) { if (interval > 0) { /* set new interval */ stream->set_interval(interval); } else { /* delete stream */ LL_DELETE(_streams, stream); delete stream; warnx("deleted stream %s", stream->get_name()); } return OK; } } if (interval == 0) { /* stream was not active and is requested to be disabled, do nothing */ return OK; } /* search for stream with specified name in supported streams list */ for (unsigned int i = 0; streams_list[i] != nullptr; i++) { if (strcmp(stream_name, streams_list[i]->get_name()) == 0) { /* create new instance */ stream = streams_list[i]->new_instance(this); stream->set_interval(interval); LL_APPEND(_streams, stream); return OK; } } /* if we reach here, the stream list does not contain the stream */ warnx("stream %s not found", stream_name); return ERROR; } void Mavlink::adjust_stream_rates(const float multiplier) { /* do not allow to push us to zero */ if (multiplier < 0.01f) { return; } /* search if stream exists */ MavlinkStream *stream; LL_FOREACH(_streams, stream) { /* set new interval */ unsigned interval = stream->get_interval(); interval /= multiplier; /* allow max ~600 Hz */ if (interval < 1600) { interval = 1600; } /* set new interval */ stream->set_interval(interval * multiplier); } } void Mavlink::configure_stream_threadsafe(const char *stream_name, const float rate) { /* orb subscription must be done from the main thread, * set _subscribe_to_stream and _subscribe_to_stream_rate fields * which polled in mavlink main loop */ if (!_task_should_exit) { /* wait for previous subscription completion */ while (_subscribe_to_stream != nullptr) { usleep(MAIN_LOOP_DELAY / 2); } /* copy stream name */ unsigned n = strlen(stream_name) + 1; char *s = new char[n]; strcpy(s, stream_name); /* set subscription task */ _subscribe_to_stream_rate = rate; _subscribe_to_stream = s; /* wait for subscription */ do { usleep(MAIN_LOOP_DELAY / 2); } while (_subscribe_to_stream != nullptr); } } int Mavlink::message_buffer_init(int size) { _message_buffer.size = size; _message_buffer.write_ptr = 0; _message_buffer.read_ptr = 0; _message_buffer.data = (char *)malloc(_message_buffer.size); int ret; if (_message_buffer.data == 0) { ret = ERROR; _message_buffer.size = 0; } else { ret = OK; } return ret; } void Mavlink::message_buffer_destroy() { _message_buffer.size = 0; _message_buffer.write_ptr = 0; _message_buffer.read_ptr = 0; free(_message_buffer.data); } int Mavlink::message_buffer_count() { int n = _message_buffer.write_ptr - _message_buffer.read_ptr; if (n < 0) { n += _message_buffer.size; } return n; } int Mavlink::message_buffer_is_empty() { return _message_buffer.read_ptr == _message_buffer.write_ptr; } bool Mavlink::message_buffer_write(const void *ptr, int size) { // bytes available to write int available = _message_buffer.read_ptr - _message_buffer.write_ptr - 1; if (available < 0) { available += _message_buffer.size; } if (size > available) { // buffer overflow return false; } char *c = (char *) ptr; int n = _message_buffer.size - _message_buffer.write_ptr; // bytes to end of the buffer if (n < size) { // message goes over end of the buffer memcpy(&(_message_buffer.data[_message_buffer.write_ptr]), c, n); _message_buffer.write_ptr = 0; } else { n = 0; } // now: n = bytes already written int p = size - n; // number of bytes to write memcpy(&(_message_buffer.data[_message_buffer.write_ptr]), &(c[n]), p); _message_buffer.write_ptr = (_message_buffer.write_ptr + p) % _message_buffer.size; return true; } int Mavlink::message_buffer_get_ptr(void **ptr, bool *is_part) { // bytes available to read int available = _message_buffer.write_ptr - _message_buffer.read_ptr; if (available == 0) { return 0; // buffer is empty } int n = 0; if (available > 0) { // read pointer is before write pointer, all available bytes can be read n = available; *is_part = false; } else { // read pointer is after write pointer, read bytes from read_ptr to end of the buffer n = _message_buffer.size - _message_buffer.read_ptr; *is_part = _message_buffer.write_ptr > 0; } *ptr = &(_message_buffer.data[_message_buffer.read_ptr]); return n; } void Mavlink::message_buffer_mark_read(int n) { _message_buffer.read_ptr = (_message_buffer.read_ptr + n) % _message_buffer.size; } void Mavlink::pass_message(const mavlink_message_t *msg) { if (_passing_on) { /* size is 8 bytes plus variable payload */ int size = MAVLINK_NUM_NON_PAYLOAD_BYTES + msg->len; pthread_mutex_lock(&_message_buffer_mutex); message_buffer_write(msg, size); pthread_mutex_unlock(&_message_buffer_mutex); } } float Mavlink::get_rate_mult() { return _rate_mult; } void Mavlink::update_rate_mult() { float const_rate = 0.0f; float rate = 0.0f; MavlinkStream *stream; LL_FOREACH(_streams, stream) { if (stream->const_rate()) { const_rate += stream->get_size() * 1000000.0f / stream->get_interval(); } else { rate += stream->get_size() * 1000000.0f / stream->get_interval(); } } /* don't scale up rates, only scale down if needed */ _rate_mult = fminf(1.0f, ((float)_datarate - const_rate) / rate); } int Mavlink::task_main(int argc, char *argv[]) { int ch; _baudrate = 57600; _datarate = 0; _mode = MAVLINK_MODE_NORMAL; /* work around some stupidity in task_create's argv handling */ argc -= 2; argv += 2; /* don't exit from getopt loop to leave getopt global variables in consistent state, * set error flag instead */ bool err_flag = false; while ((ch = getopt(argc, argv, "b:r:d:m:fpvwx")) != EOF) { switch (ch) { case 'b': _baudrate = strtoul(optarg, NULL, 10); if (_baudrate < 9600 || _baudrate > 921600) { warnx("invalid baud rate '%s'", optarg); err_flag = true; } break; case 'r': _datarate = strtoul(optarg, NULL, 10); if (_datarate < 10 || _datarate > MAX_DATA_RATE) { warnx("invalid data rate '%s'", optarg); err_flag = true; } break; case 'd': _device_name = optarg; break; // case 'e': // mavlink_link_termination_allowed = true; // break; case 'm': if (strcmp(optarg, "custom") == 0) { _mode = MAVLINK_MODE_CUSTOM; } else if (strcmp(optarg, "camera") == 0) { // left in here for compatibility _mode = MAVLINK_MODE_ONBOARD; } else if (strcmp(optarg, "onboard") == 0) { _mode = MAVLINK_MODE_ONBOARD; } break; case 'f': _forwarding_on = true; break; case 'p': _passing_on = true; break; case 'v': _verbose = true; break; case 'w': _wait_to_transmit = true; break; case 'x': _ftp_on = true; break; default: err_flag = true; break; } } if (err_flag) { usage(); return ERROR; } if (_datarate == 0) { /* convert bits to bytes and use 1/2 of bandwidth by default */ _datarate = _baudrate / 20; } if (_datarate > MAX_DATA_RATE) { _datarate = MAX_DATA_RATE; } if (Mavlink::instance_exists(_device_name, this)) { warnx("mavlink instance for %s already running", _device_name); return ERROR; } /* inform about mode */ switch (_mode) { case MAVLINK_MODE_NORMAL: warnx("mode: NORMAL"); break; case MAVLINK_MODE_CUSTOM: warnx("mode: CUSTOM"); break; case MAVLINK_MODE_ONBOARD: warnx("mode: ONBOARD"); break; default: warnx("ERROR: Unknown mode"); break; } warnx("data rate: %d Bytes/s, port: %s, baud: %d", _datarate, _device_name, _baudrate); /* flush stdout in case MAVLink is about to take it over */ fflush(stdout); struct termios uart_config_original; /* default values for arguments */ _uart_fd = mavlink_open_uart(_baudrate, _device_name, &uart_config_original, &_is_usb_uart); if (_uart_fd < 0) { warn("could not open %s", _device_name); return ERROR; } /* initialize send mutex */ pthread_mutex_init(&_send_mutex, NULL); /* initialize mavlink text message buffering */ mavlink_logbuffer_init(&_logbuffer, 5); /* if we are passing on mavlink messages, we need to prepare a buffer for this instance */ if (_passing_on || _ftp_on) { /* initialize message buffer if multiplexing is on or its needed for FTP. * make space for two messages plus off-by-one space as we use the empty element * marker ring buffer approach. */ if (OK != message_buffer_init(2 * sizeof(mavlink_message_t) + 1)) { errx(1, "can't allocate message buffer, exiting"); } /* initialize message buffer mutex */ pthread_mutex_init(&_message_buffer_mutex, NULL); } /* create the device node that's used for sending text log messages, etc. */ register_driver(MAVLINK_LOG_DEVICE, &fops, 0666, NULL); /* initialize logging device */ _mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); /* Initialize system properties */ mavlink_update_system(); /* start the MAVLink receiver */ _receive_thread = MavlinkReceiver::receive_start(this); _task_running = true; MavlinkOrbSubscription *param_sub = add_orb_subscription(ORB_ID(parameter_update)); uint64_t param_time = 0; MavlinkOrbSubscription *status_sub = add_orb_subscription(ORB_ID(vehicle_status)); uint64_t status_time = 0; struct vehicle_status_s status; status_sub->update(&status_time, &status); /* add default streams depending on mode */ /* HEARTBEAT is constant rate stream, rate never adjusted */ configure_stream("HEARTBEAT", 1.0f); /* STATUSTEXT stream is like normal stream but gets messages from logbuffer instead of uORB */ configure_stream("STATUSTEXT", 20.0f); /* COMMAND_LONG stream: use high rate to avoid commands skipping */ configure_stream("COMMAND_LONG", 100.0f); /* PARAM_VALUE stream */ _parameters_manager = (MavlinkParametersManager *) MavlinkParametersManager::new_instance(this); _parameters_manager->set_interval(interval_from_rate(30.0f)); LL_APPEND(_streams, _parameters_manager); /* MISSION_STREAM stream, actually sends all MISSION_XXX messages at some rate depending on * remote requests rate. Rate specified here controls how much bandwidth we will reserve for * mission messages. */ _mission_manager = (MavlinkMissionManager *) MavlinkMissionManager::new_instance(this); _mission_manager->set_interval(interval_from_rate(10.0f)); _mission_manager->set_verbose(_verbose); LL_APPEND(_streams, _mission_manager); switch (_mode) { case MAVLINK_MODE_NORMAL: configure_stream("SYS_STATUS", 1.0f); configure_stream("GPS_GLOBAL_ORIGIN", 0.5f); configure_stream("HIGHRES_IMU", 1.0f); configure_stream("ATTITUDE", 10.0f); configure_stream("VFR_HUD", 8.0f); configure_stream("GPS_RAW_INT", 1.0f); configure_stream("GLOBAL_POSITION_INT", 3.0f); configure_stream("LOCAL_POSITION_NED", 3.0f); configure_stream("RC_CHANNELS_RAW", 1.0f); configure_stream("POSITION_TARGET_GLOBAL_INT", 3.0f); configure_stream("ATTITUDE_TARGET", 3.0f); configure_stream("DISTANCE_SENSOR", 0.5f); configure_stream("OPTICAL_FLOW", 5.0f); break; case MAVLINK_MODE_ONBOARD: configure_stream("SYS_STATUS", 1.0f); configure_stream("ATTITUDE", 50.0f); configure_stream("GLOBAL_POSITION_INT", 50.0f); configure_stream("CAMERA_CAPTURE", 2.0f); configure_stream("ATTITUDE_TARGET", 10.0f); configure_stream("POSITION_TARGET_GLOBAL_INT", 10.0f); configure_stream("VFR_HUD", 10.0f); break; default: break; } /* set main loop delay depending on data rate to minimize CPU overhead */ _main_loop_delay = MAIN_LOOP_DELAY * 1000 / _datarate; /* now the instance is fully initialized and we can bump the instance count */ LL_APPEND(_mavlink_instances, this); while (!_task_should_exit) { /* main loop */ usleep(_main_loop_delay); perf_begin(_loop_perf); hrt_abstime t = hrt_absolute_time(); update_rate_mult(); if (param_sub->update(¶m_time, nullptr)) { /* parameters updated */ mavlink_update_system(); } if (status_sub->update(&status_time, &status)) { /* switch HIL mode if required */ set_hil_enabled(status.hil_state == HIL_STATE_ON); } /* check for requested subscriptions */ if (_subscribe_to_stream != nullptr) { if (OK == configure_stream(_subscribe_to_stream, _subscribe_to_stream_rate)) { if (_subscribe_to_stream_rate > 0.0f) { warnx("stream %s on device %s enabled with rate %.1f Hz", _subscribe_to_stream, _device_name, (double)_subscribe_to_stream_rate); } else { warnx("stream %s on device %s disabled", _subscribe_to_stream, _device_name); } } else { warnx("stream %s on device %s not found", _subscribe_to_stream, _device_name); } delete _subscribe_to_stream; _subscribe_to_stream = nullptr; } /* update streams */ MavlinkStream *stream; LL_FOREACH(_streams, stream) { stream->update(t); } /* pass messages from other UARTs or FTP worker */ if (_passing_on || _ftp_on) { bool is_part; uint8_t *read_ptr; uint8_t *write_ptr; pthread_mutex_lock(&_message_buffer_mutex); int available = message_buffer_get_ptr((void **)&read_ptr, &is_part); pthread_mutex_unlock(&_message_buffer_mutex); if (available > 0) { // Reconstruct message from buffer mavlink_message_t msg; write_ptr = (uint8_t *)&msg; // Pull a single message from the buffer size_t read_count = available; if (read_count > sizeof(mavlink_message_t)) { read_count = sizeof(mavlink_message_t); } memcpy(write_ptr, read_ptr, read_count); // We hold the mutex until after we complete the second part of the buffer. If we don't // we may end up breaking the empty slot overflow detection semantics when we mark the // possibly partial read below. pthread_mutex_lock(&_message_buffer_mutex); message_buffer_mark_read(read_count); /* write second part of buffer if there is some */ if (is_part && read_count < sizeof(mavlink_message_t)) { write_ptr += read_count; available = message_buffer_get_ptr((void **)&read_ptr, &is_part); read_count = sizeof(mavlink_message_t) - read_count; memcpy(write_ptr, read_ptr, read_count); message_buffer_mark_read(available); } pthread_mutex_unlock(&_message_buffer_mutex); resend_message(&msg); } } /* update TX/RX rates*/ if (t > _bytes_timestamp + 1000000) { if (_bytes_timestamp != 0) { float dt = (t - _bytes_timestamp) / 1000.0f; _rate_tx = _bytes_tx / dt; _rate_txerr = _bytes_txerr / dt; _rate_rx = _bytes_rx / dt; _bytes_tx = 0; _bytes_txerr = 0; _bytes_rx = 0; } _bytes_timestamp = t; } perf_end(_loop_perf); } delete _subscribe_to_stream; _subscribe_to_stream = nullptr; /* delete streams */ MavlinkStream *stream_to_del = nullptr; MavlinkStream *stream_next = _streams; while (stream_next != nullptr) { stream_to_del = stream_next; stream_next = stream_to_del->next; delete stream_to_del; } _streams = nullptr; /* delete subscriptions */ MavlinkOrbSubscription *sub_to_del = nullptr; MavlinkOrbSubscription *sub_next = _subscriptions; while (sub_next != nullptr) { sub_to_del = sub_next; sub_next = sub_to_del->next; delete sub_to_del; } _subscriptions = nullptr; warnx("waiting for UART receive thread"); /* wait for threads to complete */ pthread_join(_receive_thread, NULL); /* reset the UART flags to original state */ tcsetattr(_uart_fd, TCSANOW, &uart_config_original); /* close UART */ close(_uart_fd); /* close mavlink logging device */ close(_mavlink_fd); if (_passing_on || _ftp_on) { message_buffer_destroy(); pthread_mutex_destroy(&_message_buffer_mutex); } /* destroy log buffer */ mavlink_logbuffer_destroy(&_logbuffer); warnx("exiting"); _task_running = false; return OK; } int Mavlink::start_helper(int argc, char *argv[]) { /* create the instance in task context */ Mavlink *instance = new Mavlink(); int res; if (!instance) { /* out of memory */ res = -ENOMEM; warnx("OUT OF MEM"); } else { /* this will actually only return once MAVLink exits */ res = instance->task_main(argc, argv); /* delete instance on main thread end */ delete instance; } return res; } int Mavlink::start(int argc, char *argv[]) { // Wait for the instance count to go up one // before returning to the shell int ic = Mavlink::instance_count(); // Instantiate thread char buf[24]; sprintf(buf, "mavlink_if%d", ic); // This is where the control flow splits // between the starting task and the spawned // task - start_helper() only returns // when the started task exits. task_spawn_cmd(buf, SCHED_DEFAULT, SCHED_PRIORITY_DEFAULT, 2700, (main_t)&Mavlink::start_helper, (const char **)argv); // Ensure that this shell command // does not return before the instance // is fully initialized. As this is also // the only path to create a new instance, // this is effectively a lock on concurrent // instance starting. XXX do a real lock. // Sleep 500 us between each attempt const unsigned sleeptime = 500; // Wait 100 ms max for the startup. const unsigned limit = 100 * 1000 / sleeptime; unsigned count = 0; while (ic == Mavlink::instance_count() && count < limit) { ::usleep(sleeptime); count++; } return OK; } void Mavlink::display_status() { if (_rstatus.heartbeat_time > 0) { printf("\tGCS heartbeat:\t%llu us ago\n", hrt_elapsed_time(&_rstatus.heartbeat_time)); } printf("\tmavlink chan: #%u\n", _channel); if (_rstatus.timestamp > 0) { printf("\ttype:\t\t"); switch (_rstatus.type) { case TELEMETRY_STATUS_RADIO_TYPE_3DR_RADIO: printf("3DR RADIO\n"); break; default: printf("UNKNOWN RADIO\n"); break; } printf("\trssi:\t\t%d\n", _rstatus.rssi); printf("\tremote rssi:\t%u\n", _rstatus.remote_rssi); printf("\ttxbuf:\t\t%u\n", _rstatus.txbuf); printf("\tnoise:\t\t%d\n", _rstatus.noise); printf("\tremote noise:\t%u\n", _rstatus.remote_noise); printf("\trx errors:\t%u\n", _rstatus.rxerrors); printf("\tfixed:\t\t%u\n", _rstatus.fixed); } else { printf("\tno telem status.\n"); } printf("\trates:\n"); printf("\ttx: %.3f kB/s\n", (double)_rate_tx); printf("\ttxerr: %.3f kB/s\n", (double)_rate_txerr); printf("\trx: %.3f kB/s\n", (double)_rate_rx); printf("\trate mult: %.3f\n", (double)_rate_mult); } int Mavlink::stream_command(int argc, char *argv[]) { const char *device_name = DEFAULT_DEVICE_NAME; float rate = -1.0f; const char *stream_name = nullptr; argc -= 2; argv += 2; /* don't exit from getopt loop to leave getopt global variables in consistent state, * set error flag instead */ bool err_flag = false; int i = 0; while (i < argc) { if (0 == strcmp(argv[i], "-r") && i < argc - 1) { rate = strtod(argv[i + 1], nullptr); if (rate < 0.0f) { err_flag = true; } i++; } else if (0 == strcmp(argv[i], "-d") && i < argc - 1) { device_name = argv[i + 1]; i++; } else if (0 == strcmp(argv[i], "-s") && i < argc - 1) { stream_name = argv[i + 1]; i++; } else { err_flag = true; } i++; } if (!err_flag && rate >= 0.0f && stream_name != nullptr) { Mavlink *inst = get_instance_for_device(device_name); if (inst != nullptr) { inst->configure_stream_threadsafe(stream_name, rate); } else { // If the link is not running we should complain, but not fall over // because this is so easy to get wrong and not fatal. Warning is sufficient. errx(0, "mavlink for device %s is not running", device_name); } } else { errx(1, "usage: mavlink stream [-d device] -s stream -r rate"); } return OK; } static void usage() { warnx("usage: mavlink {start|stop-all|stream} [-d device] [-b baudrate]\n\t[-r rate][-m mode] [-s stream] [-f] [-p] [-v] [-w] [-x]"); } int mavlink_main(int argc, char *argv[]) { if (argc < 2) { usage(); exit(1); } if (!strcmp(argv[1], "start")) { return Mavlink::start(argc, argv); } else if (!strcmp(argv[1], "stop")) { warnx("mavlink stop is deprecated, use stop-all instead"); usage(); exit(1); } else if (!strcmp(argv[1], "stop-all")) { return Mavlink::destroy_all_instances(); } else if (!strcmp(argv[1], "status")) { return Mavlink::get_status_all_instances(); } else if (!strcmp(argv[1], "stream")) { return Mavlink::stream_command(argc, argv); } else { usage(); exit(1); } return 0; }