/**************************************************************************** * * Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mavlink_receiver.cpp * MAVLink protocol message receive and dispatch * * @author Lorenz Meier * @author Anton Babushkin */ /* XXX trim includes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __BEGIN_DECLS #include "mavlink_bridge_header.h" #include "mavlink_receiver.h" #include "mavlink_main.h" #include "util.h" __END_DECLS static const float mg2ms2 = CONSTANTS_ONE_G / 1000.0f; MavlinkReceiver::MavlinkReceiver(Mavlink *parent) : _mavlink(parent), _global_pos_pub(-1), _local_pos_pub(-1), _attitude_pub(-1), _gps_pub(-1), _sensors_pub(-1), _gyro_pub(-1), _accel_pub(-1), _mag_pub(-1), _baro_pub(-1), _airspeed_pub(-1), _battery_pub(-1), _cmd_pub(-1), _flow_pub(-1), _offboard_control_sp_pub(-1), _vicon_position_pub(-1), _telemetry_status_pub(-1), _rc_pub(-1), _manual_pub(-1), _telemetry_heartbeat_time(0), _radio_status_available(false), _hil_frames(0), _old_timestamp(0), _hil_local_proj_inited(0), _hil_local_alt0(0.0) { memset(&hil_local_pos, 0, sizeof(hil_local_pos)); // make sure the FTP server is started (void)MavlinkFTP::getServer(); } MavlinkReceiver::~MavlinkReceiver() { } void MavlinkReceiver::handle_message(mavlink_message_t *msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_COMMAND_LONG: handle_message_command_long(msg); break; case MAVLINK_MSG_ID_OPTICAL_FLOW: handle_message_optical_flow(msg); break; case MAVLINK_MSG_ID_SET_MODE: handle_message_set_mode(msg); break; case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE: handle_message_vicon_position_estimate(msg); break; case MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST: handle_message_quad_swarm_roll_pitch_yaw_thrust(msg); break; case MAVLINK_MSG_ID_RADIO_STATUS: handle_message_radio_status(msg); break; case MAVLINK_MSG_ID_MANUAL_CONTROL: handle_message_manual_control(msg); break; case MAVLINK_MSG_ID_HEARTBEAT: handle_message_heartbeat(msg); break; case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: handle_message_request_data_stream(msg); break; case MAVLINK_MSG_ID_ENCAPSULATED_DATA: MavlinkFTP::getServer()->handle_message(_mavlink, msg); break; default: break; } /* * Only decode hil messages in HIL mode. * * The HIL mode is enabled by the HIL bit flag * in the system mode. Either send a set mode * COMMAND_LONG message or a SET_MODE message * * Accept HIL GPS messages if use_hil_gps flag is true. * This allows to provide fake gps measurements to the system. */ if (_mavlink->get_hil_enabled()) { switch (msg->msgid) { case MAVLINK_MSG_ID_HIL_SENSOR: handle_message_hil_sensor(msg); break; case MAVLINK_MSG_ID_HIL_STATE_QUATERNION: handle_message_hil_state_quaternion(msg); break; default: break; } } if (_mavlink->get_hil_enabled() || (_mavlink->get_use_hil_gps() && msg->sysid == mavlink_system.sysid)) { switch (msg->msgid) { case MAVLINK_MSG_ID_HIL_GPS: handle_message_hil_gps(msg); break; default: break; } } /* If we've received a valid message, mark the flag indicating so. This is used in the '-w' command-line flag. */ _mavlink->set_has_received_messages(true); } void MavlinkReceiver::handle_message_command_long(mavlink_message_t *msg) { /* command */ mavlink_command_long_t cmd_mavlink; mavlink_msg_command_long_decode(msg, &cmd_mavlink); if (cmd_mavlink.target_system == mavlink_system.sysid && ((cmd_mavlink.target_component == mavlink_system.compid) || (cmd_mavlink.target_component == MAV_COMP_ID_ALL))) { //check for MAVLINK terminate command if (cmd_mavlink.command == MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN && ((int)cmd_mavlink.param1) == 3) { /* This is the link shutdown command, terminate mavlink */ warnx("terminated by remote command"); fflush(stdout); usleep(50000); /* terminate other threads and this thread */ _mavlink->_task_should_exit = true; } else { if (msg->sysid == mavlink_system.sysid && msg->compid == mavlink_system.compid) { warnx("ignoring CMD spoofed with same SYS/COMP ID"); return; } struct vehicle_command_s vcmd; memset(&vcmd, 0, sizeof(vcmd)); /* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = cmd_mavlink.param1; vcmd.param2 = cmd_mavlink.param2; vcmd.param3 = cmd_mavlink.param3; vcmd.param4 = cmd_mavlink.param4; vcmd.param5 = cmd_mavlink.param5; vcmd.param6 = cmd_mavlink.param6; vcmd.param7 = cmd_mavlink.param7; // XXX do proper translation vcmd.command = (enum VEHICLE_CMD)cmd_mavlink.command; vcmd.target_system = cmd_mavlink.target_system; vcmd.target_component = cmd_mavlink.target_component; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = cmd_mavlink.confirmation; if (_cmd_pub < 0) { _cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd); } else { orb_publish(ORB_ID(vehicle_command), _cmd_pub, &vcmd); } } } } void MavlinkReceiver::handle_message_optical_flow(mavlink_message_t *msg) { /* optical flow */ mavlink_optical_flow_t flow; mavlink_msg_optical_flow_decode(msg, &flow); struct optical_flow_s f; memset(&f, 0, sizeof(f)); f.timestamp = hrt_absolute_time(); f.flow_timestamp = flow.time_usec; f.flow_raw_x = flow.flow_x; f.flow_raw_y = flow.flow_y; f.flow_comp_x_m = flow.flow_comp_m_x; f.flow_comp_y_m = flow.flow_comp_m_y; f.ground_distance_m = flow.ground_distance; f.quality = flow.quality; f.sensor_id = flow.sensor_id; if (_flow_pub < 0) { _flow_pub = orb_advertise(ORB_ID(optical_flow), &f); } else { orb_publish(ORB_ID(optical_flow), _flow_pub, &f); } } void MavlinkReceiver::handle_message_set_mode(mavlink_message_t *msg) { mavlink_set_mode_t new_mode; mavlink_msg_set_mode_decode(msg, &new_mode); struct vehicle_command_s vcmd; memset(&vcmd, 0, sizeof(vcmd)); union px4_custom_mode custom_mode; custom_mode.data = new_mode.custom_mode; /* copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */ vcmd.param1 = new_mode.base_mode; vcmd.param2 = custom_mode.main_mode; vcmd.param3 = 0; vcmd.param4 = 0; vcmd.param5 = 0; vcmd.param6 = 0; vcmd.param7 = 0; vcmd.command = VEHICLE_CMD_DO_SET_MODE; vcmd.target_system = new_mode.target_system; vcmd.target_component = MAV_COMP_ID_ALL; vcmd.source_system = msg->sysid; vcmd.source_component = msg->compid; vcmd.confirmation = 1; if (_cmd_pub < 0) { _cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd); } else { orb_publish(ORB_ID(vehicle_command), _cmd_pub, &vcmd); } } void MavlinkReceiver::handle_message_vicon_position_estimate(mavlink_message_t *msg) { mavlink_vicon_position_estimate_t pos; mavlink_msg_vicon_position_estimate_decode(msg, &pos); struct vehicle_vicon_position_s vicon_position; memset(&vicon_position, 0, sizeof(vicon_position)); vicon_position.timestamp = hrt_absolute_time(); vicon_position.x = pos.x; vicon_position.y = pos.y; vicon_position.z = pos.z; vicon_position.roll = pos.roll; vicon_position.pitch = pos.pitch; vicon_position.yaw = pos.yaw; if (_vicon_position_pub < 0) { _vicon_position_pub = orb_advertise(ORB_ID(vehicle_vicon_position), &vicon_position); } else { orb_publish(ORB_ID(vehicle_vicon_position), _vicon_position_pub, &vicon_position); } } void MavlinkReceiver::handle_message_quad_swarm_roll_pitch_yaw_thrust(mavlink_message_t *msg) { mavlink_set_quad_swarm_roll_pitch_yaw_thrust_t quad_motors_setpoint; mavlink_msg_set_quad_swarm_roll_pitch_yaw_thrust_decode(msg, &quad_motors_setpoint); if (mavlink_system.sysid < 4) { struct offboard_control_setpoint_s offboard_control_sp; memset(&offboard_control_sp, 0, sizeof(offboard_control_sp)); uint8_t ml_mode = 0; bool ml_armed = false; switch (quad_motors_setpoint.mode) { case 0: ml_armed = false; break; case 1: ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_RATES; ml_armed = true; break; case 2: ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE; ml_armed = true; break; case 3: ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY; break; case 4: ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_POSITION; break; } offboard_control_sp.p1 = (float)quad_motors_setpoint.roll[mavlink_system.sysid - 1] / (float)INT16_MAX; offboard_control_sp.p2 = (float)quad_motors_setpoint.pitch[mavlink_system.sysid - 1] / (float)INT16_MAX; offboard_control_sp.p3 = (float)quad_motors_setpoint.yaw[mavlink_system.sysid - 1] / (float)INT16_MAX; offboard_control_sp.p4 = (float)quad_motors_setpoint.thrust[mavlink_system.sysid - 1] / (float)UINT16_MAX; if (quad_motors_setpoint.thrust[mavlink_system.sysid - 1] == 0) { ml_armed = false; } offboard_control_sp.armed = ml_armed; offboard_control_sp.mode = static_cast(ml_mode); offboard_control_sp.timestamp = hrt_absolute_time(); if (_offboard_control_sp_pub < 0) { _offboard_control_sp_pub = orb_advertise(ORB_ID(offboard_control_setpoint), &offboard_control_sp); } else { orb_publish(ORB_ID(offboard_control_setpoint), _offboard_control_sp_pub, &offboard_control_sp); } } } void MavlinkReceiver::handle_message_radio_status(mavlink_message_t *msg) { mavlink_radio_status_t rstatus; mavlink_msg_radio_status_decode(msg, &rstatus); struct telemetry_status_s tstatus; memset(&tstatus, 0, sizeof(tstatus)); tstatus.timestamp = hrt_absolute_time(); tstatus.heartbeat_time = _telemetry_heartbeat_time; tstatus.type = TELEMETRY_STATUS_RADIO_TYPE_3DR_RADIO; tstatus.rssi = rstatus.rssi; tstatus.remote_rssi = rstatus.remrssi; tstatus.txbuf = rstatus.txbuf; tstatus.noise = rstatus.noise; tstatus.remote_noise = rstatus.remnoise; tstatus.rxerrors = rstatus.rxerrors; tstatus.fixed = rstatus.fixed; if (_telemetry_status_pub < 0) { _telemetry_status_pub = orb_advertise(ORB_ID(telemetry_status), &tstatus); } else { orb_publish(ORB_ID(telemetry_status), _telemetry_status_pub, &tstatus); } /* this means that heartbeats alone won't be published to the radio status no more */ _radio_status_available = true; } void MavlinkReceiver::handle_message_manual_control(mavlink_message_t *msg) { mavlink_manual_control_t man; mavlink_msg_manual_control_decode(msg, &man); struct manual_control_setpoint_s manual; memset(&manual, 0, sizeof(manual)); manual.timestamp = hrt_absolute_time(); manual.x = man.x / 1000.0f; manual.y = man.y / 1000.0f; manual.r = man.r / 1000.0f; manual.z = man.z / 1000.0f; if (_manual_pub < 0) { _manual_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual); } else { orb_publish(ORB_ID(manual_control_setpoint), _manual_pub, &manual); } } void MavlinkReceiver::handle_message_heartbeat(mavlink_message_t *msg) { mavlink_heartbeat_t hb; mavlink_msg_heartbeat_decode(msg, &hb); /* ignore own heartbeats, accept only heartbeats from GCS */ if (msg->sysid != mavlink_system.sysid && hb.type == MAV_TYPE_GCS) { _telemetry_heartbeat_time = hrt_absolute_time(); /* if no radio status messages arrive, lets at least publish that heartbeats were received */ if (!_radio_status_available) { struct telemetry_status_s tstatus; memset(&tstatus, 0, sizeof(tstatus)); tstatus.timestamp = _telemetry_heartbeat_time; tstatus.heartbeat_time = _telemetry_heartbeat_time; tstatus.type = TELEMETRY_STATUS_RADIO_TYPE_GENERIC; if (_telemetry_status_pub < 0) { _telemetry_status_pub = orb_advertise(ORB_ID(telemetry_status), &tstatus); } else { orb_publish(ORB_ID(telemetry_status), _telemetry_status_pub, &tstatus); } } } } void MavlinkReceiver::handle_message_request_data_stream(mavlink_message_t *msg) { mavlink_request_data_stream_t req; mavlink_msg_request_data_stream_decode(msg, &req); if (req.target_system == mavlink_system.sysid && req.target_component == mavlink_system.compid) { float rate = req.start_stop ? (1000.0f / req.req_message_rate) : 0.0f; MavlinkStream *stream; LL_FOREACH(_mavlink->get_streams(), stream) { if (req.req_stream_id == stream->get_id()) { _mavlink->configure_stream_threadsafe(stream->get_name(), rate); } } } } void MavlinkReceiver::handle_message_hil_sensor(mavlink_message_t *msg) { mavlink_hil_sensor_t imu; mavlink_msg_hil_sensor_decode(msg, &imu); uint64_t timestamp = hrt_absolute_time(); /* airspeed */ { struct airspeed_s airspeed; memset(&airspeed, 0, sizeof(airspeed)); float ias = calc_indicated_airspeed(imu.diff_pressure * 1e2f); // XXX need to fix this float tas = ias; airspeed.timestamp = timestamp; airspeed.indicated_airspeed_m_s = ias; airspeed.true_airspeed_m_s = tas; if (_airspeed_pub < 0) { _airspeed_pub = orb_advertise(ORB_ID(airspeed), &airspeed); } else { orb_publish(ORB_ID(airspeed), _airspeed_pub, &airspeed); } } /* gyro */ { struct gyro_report gyro; memset(&gyro, 0, sizeof(gyro)); gyro.timestamp = timestamp; gyro.x_raw = imu.xgyro * 1000.0f; gyro.y_raw = imu.ygyro * 1000.0f; gyro.z_raw = imu.zgyro * 1000.0f; gyro.x = imu.xgyro; gyro.y = imu.ygyro; gyro.z = imu.zgyro; gyro.temperature = imu.temperature; if (_gyro_pub < 0) { _gyro_pub = orb_advertise(ORB_ID(sensor_gyro), &gyro); } else { orb_publish(ORB_ID(sensor_gyro), _gyro_pub, &gyro); } } /* accelerometer */ { struct accel_report accel; memset(&accel, 0, sizeof(accel)); accel.timestamp = timestamp; accel.x_raw = imu.xacc / mg2ms2; accel.y_raw = imu.yacc / mg2ms2; accel.z_raw = imu.zacc / mg2ms2; accel.x = imu.xacc; accel.y = imu.yacc; accel.z = imu.zacc; accel.temperature = imu.temperature; if (_accel_pub < 0) { _accel_pub = orb_advertise(ORB_ID(sensor_accel), &accel); } else { orb_publish(ORB_ID(sensor_accel), _accel_pub, &accel); } } /* magnetometer */ { struct mag_report mag; memset(&mag, 0, sizeof(mag)); mag.timestamp = timestamp; mag.x_raw = imu.xmag * 1000.0f; mag.y_raw = imu.ymag * 1000.0f; mag.z_raw = imu.zmag * 1000.0f; mag.x = imu.xmag; mag.y = imu.ymag; mag.z = imu.zmag; if (_mag_pub < 0) { _mag_pub = orb_advertise(ORB_ID(sensor_mag), &mag); } else { orb_publish(ORB_ID(sensor_mag), _mag_pub, &mag); } } /* baro */ { struct baro_report baro; memset(&baro, 0, sizeof(baro)); baro.timestamp = timestamp; baro.pressure = imu.abs_pressure; baro.altitude = imu.pressure_alt; baro.temperature = imu.temperature; if (_baro_pub < 0) { _baro_pub = orb_advertise(ORB_ID(sensor_baro), &baro); } else { orb_publish(ORB_ID(sensor_baro), _baro_pub, &baro); } } /* sensor combined */ { struct sensor_combined_s hil_sensors; memset(&hil_sensors, 0, sizeof(hil_sensors)); hil_sensors.timestamp = timestamp; hil_sensors.gyro_raw[0] = imu.xgyro * 1000.0f; hil_sensors.gyro_raw[1] = imu.ygyro * 1000.0f; hil_sensors.gyro_raw[2] = imu.zgyro * 1000.0f; hil_sensors.gyro_rad_s[0] = imu.xgyro; hil_sensors.gyro_rad_s[1] = imu.ygyro; hil_sensors.gyro_rad_s[2] = imu.zgyro; hil_sensors.accelerometer_raw[0] = imu.xacc / mg2ms2; hil_sensors.accelerometer_raw[1] = imu.yacc / mg2ms2; hil_sensors.accelerometer_raw[2] = imu.zacc / mg2ms2; hil_sensors.accelerometer_m_s2[0] = imu.xacc; hil_sensors.accelerometer_m_s2[1] = imu.yacc; hil_sensors.accelerometer_m_s2[2] = imu.zacc; hil_sensors.accelerometer_mode = 0; // TODO what is this? hil_sensors.accelerometer_range_m_s2 = 32.7f; // int16 hil_sensors.accelerometer_timestamp = timestamp; hil_sensors.adc_voltage_v[0] = 0.0f; hil_sensors.adc_voltage_v[1] = 0.0f; hil_sensors.adc_voltage_v[2] = 0.0f; hil_sensors.magnetometer_raw[0] = imu.xmag * 1000.0f; hil_sensors.magnetometer_raw[1] = imu.ymag * 1000.0f; hil_sensors.magnetometer_raw[2] = imu.zmag * 1000.0f; hil_sensors.magnetometer_ga[0] = imu.xmag; hil_sensors.magnetometer_ga[1] = imu.ymag; hil_sensors.magnetometer_ga[2] = imu.zmag; hil_sensors.magnetometer_range_ga = 32.7f; // int16 hil_sensors.magnetometer_mode = 0; // TODO what is this hil_sensors.magnetometer_cuttoff_freq_hz = 50.0f; hil_sensors.magnetometer_timestamp = timestamp; hil_sensors.baro_pres_mbar = imu.abs_pressure; hil_sensors.baro_alt_meter = imu.pressure_alt; hil_sensors.baro_temp_celcius = imu.temperature; hil_sensors.baro_timestamp = timestamp; hil_sensors.differential_pressure_pa = imu.diff_pressure * 1e2f; //from hPa to Pa hil_sensors.differential_pressure_timestamp = timestamp; /* publish combined sensor topic */ if (_sensors_pub < 0) { _sensors_pub = orb_advertise(ORB_ID(sensor_combined), &hil_sensors); } else { orb_publish(ORB_ID(sensor_combined), _sensors_pub, &hil_sensors); } } /* battery status */ { struct battery_status_s hil_battery_status; memset(&hil_battery_status, 0, sizeof(hil_battery_status)); hil_battery_status.timestamp = timestamp; hil_battery_status.voltage_v = 11.1f; hil_battery_status.voltage_filtered_v = 11.1f; hil_battery_status.current_a = 10.0f; hil_battery_status.discharged_mah = -1.0f; if (_battery_pub < 0) { _battery_pub = orb_advertise(ORB_ID(battery_status), &hil_battery_status); } else { orb_publish(ORB_ID(battery_status), _battery_pub, &hil_battery_status); } } /* increment counters */ _hil_frames++; /* print HIL sensors rate */ if ((timestamp - _old_timestamp) > 10000000) { printf("receiving HIL sensors at %d hz\n", _hil_frames / 10); _old_timestamp = timestamp; _hil_frames = 0; } } void MavlinkReceiver::handle_message_hil_gps(mavlink_message_t *msg) { mavlink_hil_gps_t gps; mavlink_msg_hil_gps_decode(msg, &gps); uint64_t timestamp = hrt_absolute_time(); struct vehicle_gps_position_s hil_gps; memset(&hil_gps, 0, sizeof(hil_gps)); hil_gps.timestamp_time = timestamp; hil_gps.time_gps_usec = gps.time_usec; hil_gps.timestamp_position = timestamp; hil_gps.lat = gps.lat; hil_gps.lon = gps.lon; hil_gps.alt = gps.alt; hil_gps.eph = (float)gps.eph * 1e-2f; // from cm to m hil_gps.epv = (float)gps.epv * 1e-2f; // from cm to m hil_gps.timestamp_variance = timestamp; hil_gps.s_variance_m_s = 5.0f; hil_gps.timestamp_velocity = timestamp; hil_gps.vel_m_s = (float)gps.vel * 1e-2f; // from cm/s to m/s hil_gps.vel_n_m_s = gps.vn * 1e-2f; // from cm to m hil_gps.vel_e_m_s = gps.ve * 1e-2f; // from cm to m hil_gps.vel_d_m_s = gps.vd * 1e-2f; // from cm to m hil_gps.vel_ned_valid = true; hil_gps.cog_rad = _wrap_pi(gps.cog * M_DEG_TO_RAD_F * 1e-2f); hil_gps.fix_type = gps.fix_type; hil_gps.satellites_used = gps.satellites_visible; //TODO: rename mavlink_hil_gps_t sats visible to used? if (_gps_pub < 0) { _gps_pub = orb_advertise(ORB_ID(vehicle_gps_position), &hil_gps); } else { orb_publish(ORB_ID(vehicle_gps_position), _gps_pub, &hil_gps); } } void MavlinkReceiver::handle_message_hil_state_quaternion(mavlink_message_t *msg) { mavlink_hil_state_quaternion_t hil_state; mavlink_msg_hil_state_quaternion_decode(msg, &hil_state); uint64_t timestamp = hrt_absolute_time(); /* airspeed */ { struct airspeed_s airspeed; memset(&airspeed, 0, sizeof(airspeed)); airspeed.timestamp = timestamp; airspeed.indicated_airspeed_m_s = hil_state.ind_airspeed * 1e-2f; airspeed.true_airspeed_m_s = hil_state.true_airspeed * 1e-2f; if (_airspeed_pub < 0) { _airspeed_pub = orb_advertise(ORB_ID(airspeed), &airspeed); } else { orb_publish(ORB_ID(airspeed), _airspeed_pub, &airspeed); } } /* attitude */ struct vehicle_attitude_s hil_attitude; { memset(&hil_attitude, 0, sizeof(hil_attitude)); math::Quaternion q(hil_state.attitude_quaternion); math::Matrix<3, 3> C_nb = q.to_dcm(); math::Vector<3> euler = C_nb.to_euler(); hil_attitude.timestamp = timestamp; memcpy(hil_attitude.R, C_nb.data, sizeof(hil_attitude.R)); hil_attitude.R_valid = true; hil_attitude.q[0] = q(0); hil_attitude.q[1] = q(1); hil_attitude.q[2] = q(2); hil_attitude.q[3] = q(3); hil_attitude.q_valid = true; hil_attitude.roll = euler(0); hil_attitude.pitch = euler(1); hil_attitude.yaw = euler(2); hil_attitude.rollspeed = hil_state.rollspeed; hil_attitude.pitchspeed = hil_state.pitchspeed; hil_attitude.yawspeed = hil_state.yawspeed; if (_attitude_pub < 0) { _attitude_pub = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude); } else { orb_publish(ORB_ID(vehicle_attitude), _attitude_pub, &hil_attitude); } } /* global position */ { struct vehicle_global_position_s hil_global_pos; memset(&hil_global_pos, 0, sizeof(hil_global_pos)); hil_global_pos.timestamp = timestamp; hil_global_pos.lat = hil_state.lat; hil_global_pos.lon = hil_state.lon; hil_global_pos.alt = hil_state.alt / 1000.0f; hil_global_pos.vel_n = hil_state.vx / 100.0f; hil_global_pos.vel_e = hil_state.vy / 100.0f; hil_global_pos.vel_d = hil_state.vz / 100.0f; hil_global_pos.yaw = hil_attitude.yaw; hil_global_pos.eph = 2.0f; hil_global_pos.epv = 4.0f; if (_global_pos_pub < 0) { _global_pos_pub = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos); } else { orb_publish(ORB_ID(vehicle_global_position), _global_pos_pub, &hil_global_pos); } } /* local position */ { double lat = hil_state.lat * 1e-7; double lon = hil_state.lon * 1e-7; if (!_hil_local_proj_inited) { _hil_local_proj_inited = true; _hil_local_alt0 = hil_state.alt / 1000.0f; map_projection_init(&_hil_local_proj_ref, hil_state.lat, hil_state.lon); hil_local_pos.ref_timestamp = timestamp; hil_local_pos.ref_lat = lat; hil_local_pos.ref_lon = lon; hil_local_pos.ref_alt = _hil_local_alt0; } float x; float y; map_projection_project(&_hil_local_proj_ref, lat, lon, &x, &y); hil_local_pos.timestamp = timestamp; hil_local_pos.xy_valid = true; hil_local_pos.z_valid = true; hil_local_pos.v_xy_valid = true; hil_local_pos.v_z_valid = true; hil_local_pos.x = x; hil_local_pos.y = y; hil_local_pos.z = _hil_local_alt0 - hil_state.alt / 1000.0f; hil_local_pos.vx = hil_state.vx / 100.0f; hil_local_pos.vy = hil_state.vy / 100.0f; hil_local_pos.vz = hil_state.vz / 100.0f; hil_local_pos.yaw = hil_attitude.yaw; hil_local_pos.xy_global = true; hil_local_pos.z_global = true; bool landed = (float)(hil_state.alt) / 1000.0f < (_hil_local_alt0 + 0.1f); // XXX improve? hil_local_pos.landed = landed; if (_local_pos_pub < 0) { _local_pos_pub = orb_advertise(ORB_ID(vehicle_local_position), &hil_local_pos); } else { orb_publish(ORB_ID(vehicle_local_position), _local_pos_pub, &hil_local_pos); } } /* accelerometer */ { struct accel_report accel; memset(&accel, 0, sizeof(accel)); accel.timestamp = timestamp; accel.x_raw = hil_state.xacc / CONSTANTS_ONE_G * 1e3f; accel.y_raw = hil_state.yacc / CONSTANTS_ONE_G * 1e3f; accel.z_raw = hil_state.zacc / CONSTANTS_ONE_G * 1e3f; accel.x = hil_state.xacc; accel.y = hil_state.yacc; accel.z = hil_state.zacc; accel.temperature = 25.0f; if (_accel_pub < 0) { _accel_pub = orb_advertise(ORB_ID(sensor_accel), &accel); } else { orb_publish(ORB_ID(sensor_accel), _accel_pub, &accel); } } /* battery status */ { struct battery_status_s hil_battery_status; memset(&hil_battery_status, 0, sizeof(hil_battery_status)); hil_battery_status.timestamp = timestamp; hil_battery_status.voltage_v = 11.1f; hil_battery_status.voltage_filtered_v = 11.1f; hil_battery_status.current_a = 10.0f; hil_battery_status.discharged_mah = -1.0f; if (_battery_pub < 0) { _battery_pub = orb_advertise(ORB_ID(battery_status), &hil_battery_status); } else { orb_publish(ORB_ID(battery_status), _battery_pub, &hil_battery_status); } } } /** * Receive data from UART. */ void * MavlinkReceiver::receive_thread(void *arg) { int uart_fd = _mavlink->get_uart_fd(); const int timeout = 500; uint8_t buf[32]; mavlink_message_t msg; /* set thread name */ char thread_name[24]; sprintf(thread_name, "mavlink_rcv_if%d", _mavlink->get_instance_id()); prctl(PR_SET_NAME, thread_name, getpid()); struct pollfd fds[1]; fds[0].fd = uart_fd; fds[0].events = POLLIN; ssize_t nread = 0; while (!_mavlink->_task_should_exit) { if (poll(fds, 1, timeout) > 0) { /* non-blocking read. read may return negative values */ if ((nread = read(uart_fd, buf, sizeof(buf))) < (ssize_t)sizeof(buf)) { /* to avoid reading very small chunks wait for data before reading */ usleep(1000); } /* if read failed, this loop won't execute */ for (ssize_t i = 0; i < nread; i++) { if (mavlink_parse_char(_mavlink->get_channel(), buf[i], &msg, &status)) { /* handle generic messages and commands */ handle_message(&msg); /* handle packet with waypoint component */ _mavlink->mavlink_wpm_message_handler(&msg); /* handle packet with parameter component */ _mavlink->mavlink_pm_message_handler(_mavlink->get_channel(), &msg); if (_mavlink->get_forwarding_on()) { /* forward any messages to other mavlink instances */ Mavlink::forward_message(&msg, _mavlink); } } } } } return NULL; } void MavlinkReceiver::print_status() { } void *MavlinkReceiver::start_helper(void *context) { MavlinkReceiver *rcv = new MavlinkReceiver((Mavlink *)context); rcv->receive_thread(NULL); delete rcv; return nullptr; } pthread_t MavlinkReceiver::receive_start(Mavlink *parent) { pthread_attr_t receiveloop_attr; pthread_attr_init(&receiveloop_attr); // set to non-blocking read int flags = fcntl(parent->get_uart_fd(), F_GETFL, 0); fcntl(parent->get_uart_fd(), F_SETFL, flags | O_NONBLOCK); struct sched_param param; (void)pthread_attr_getschedparam(&receiveloop_attr, ¶m); param.sched_priority = SCHED_PRIORITY_MAX - 40; (void)pthread_attr_setschedparam(&receiveloop_attr, ¶m); pthread_attr_setstacksize(&receiveloop_attr, 2900); pthread_t thread; pthread_create(&thread, &receiveloop_attr, MavlinkReceiver::start_helper, (void *)parent); pthread_attr_destroy(&receiveloop_attr); return thread; }