/**************************************************************************** * * Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_att_control_main.cpp * Multicopter attitude controller. * * @author Tobias Naegeli * @author Lorenz Meier * @author Anton Babushkin * @author Thomas Gubler * @author Julian Oes * @author Roman Bapst * * The controller has two loops: P loop for angular error and PD loop for angular rate error. * Desired rotation calculated keeping in mind that yaw response is normally slower than roll/pitch. * For small deviations controller rotates copter to have shortest path of thrust vector and independently rotates around yaw, * so actual rotation axis is not constant. For large deviations controller rotates copter around fixed axis. * These two approaches fused seamlessly with weight depending on angular error. * When thrust vector directed near-horizontally (e.g. roll ~= PI/2) yaw setpoint ignored because of singularity. * Controller doesn't use Euler angles for work, they generated only for more human-friendly control and logging. * If rotation matrix setpoint is invalid it will be generated from Euler angles for compatibility with old position controllers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mc_att_control_base.h" /** * Multicopter attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int mc_att_control_main(int argc, char *argv[]); #define YAW_DEADZONE 0.05f #define MIN_TAKEOFF_THRUST 0.2f #define RATES_I_LIMIT 0.3f class MulticopterAttitudeControl : public MulticopterAttitudeControlBase { public: /** * Constructor */ MulticopterAttitudeControl(); /** * Destructor, also kills the sensors task. */ ~MulticopterAttitudeControl(); /** * Start the sensors task. * * @return OK on success. */ int start(); void handle_vehicle_attitude(const PX4_TOPIC_T(vehicle_attitude) &msg); private: bool _task_should_exit; /**< if true, sensor task should exit */ int _control_task; /**< task handle for sensor task */ bool _actuators_0_circuit_breaker_enabled; /**< circuit breaker to suppress output */ int _v_att_sub; /**< vehicle attitude subscription */ int _v_att_sp_sub; /**< vehicle attitude setpoint subscription */ int _v_rates_sp_sub; /**< vehicle rates setpoint subscription */ int _v_control_mode_sub; /**< vehicle control mode subscription */ int _params_sub; /**< parameter updates subscription */ int _manual_control_sp_sub; /**< manual control setpoint subscription */ int _armed_sub; /**< arming status subscription */ orb_advert_t _att_sp_pub; /**< attitude setpoint publication */ orb_advert_t _v_rates_sp_pub; /**< rate setpoint publication */ orb_advert_t _actuators_0_pub; /**< attitude actuator controls publication */ struct { param_t roll_p; param_t roll_rate_p; param_t roll_rate_i; param_t roll_rate_d; param_t pitch_p; param_t pitch_rate_p; param_t pitch_rate_i; param_t pitch_rate_d; param_t yaw_p; param_t yaw_rate_p; param_t yaw_rate_i; param_t yaw_rate_d; param_t yaw_ff; param_t yaw_rate_max; param_t man_roll_max; param_t man_pitch_max; param_t man_yaw_max; param_t acro_roll_max; param_t acro_pitch_max; param_t acro_yaw_max; } _params_handles; /**< handles for interesting parameters */ perf_counter_t _loop_perf; /**< loop performance counter */ /** * Update our local parameter cache. */ int parameters_update(); /** * Check for parameter update and handle it. */ void parameter_update_poll(); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for attitude setpoint updates. */ void vehicle_attitude_setpoint_poll(); /** * Check for rates setpoint updates. */ void vehicle_rates_setpoint_poll(); /** * Check for arming status updates. */ void arming_status_poll(); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main attitude control task. */ void task_main(); }; namespace mc_att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; MulticopterAttitudeControl *g_control; } MulticopterAttitudeControl::MulticopterAttitudeControl() : MulticopterAttitudeControlBase(), _task_should_exit(false), _control_task(-1), _actuators_0_circuit_breaker_enabled(false), /* subscriptions */ _v_att_sub(-1), _v_att_sp_sub(-1), _v_control_mode_sub(-1), _params_sub(-1), _manual_control_sp_sub(-1), _armed_sub(-1), /* publications */ _att_sp_pub(-1), _v_rates_sp_pub(-1), _actuators_0_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "mc_att_control")) { _params_handles.roll_p = param_find("MC_ROLL_P"); _params_handles.roll_rate_p = param_find("MC_ROLLRATE_P"); _params_handles.roll_rate_i = param_find("MC_ROLLRATE_I"); _params_handles.roll_rate_d = param_find("MC_ROLLRATE_D"); _params_handles.pitch_p = param_find("MC_PITCH_P"); _params_handles.pitch_rate_p = param_find("MC_PITCHRATE_P"); _params_handles.pitch_rate_i = param_find("MC_PITCHRATE_I"); _params_handles.pitch_rate_d = param_find("MC_PITCHRATE_D"); _params_handles.yaw_p = param_find("MC_YAW_P"); _params_handles.yaw_rate_p = param_find("MC_YAWRATE_P"); _params_handles.yaw_rate_i = param_find("MC_YAWRATE_I"); _params_handles.yaw_rate_d = param_find("MC_YAWRATE_D"); _params_handles.yaw_ff = param_find("MC_YAW_FF"); _params_handles.yaw_rate_max = param_find("MC_YAWRATE_MAX"); _params_handles.man_roll_max = param_find("MC_MAN_R_MAX"); _params_handles.man_pitch_max = param_find("MC_MAN_P_MAX"); _params_handles.man_yaw_max = param_find("MC_MAN_Y_MAX"); _params_handles.acro_roll_max = param_find("MC_ACRO_R_MAX"); _params_handles.acro_pitch_max = param_find("MC_ACRO_P_MAX"); _params_handles.acro_yaw_max = param_find("MC_ACRO_Y_MAX"); /* fetch initial parameter values */ parameters_update(); } MulticopterAttitudeControl::~MulticopterAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } mc_att_control::g_control = nullptr; } int MulticopterAttitudeControl::parameters_update() { float v; /* roll gains */ param_get(_params_handles.roll_p, &v); _params.att_p(0) = v; param_get(_params_handles.roll_rate_p, &v); _params.rate_p(0) = v; param_get(_params_handles.roll_rate_i, &v); _params.rate_i(0) = v; param_get(_params_handles.roll_rate_d, &v); _params.rate_d(0) = v; /* pitch gains */ param_get(_params_handles.pitch_p, &v); _params.att_p(1) = v; param_get(_params_handles.pitch_rate_p, &v); _params.rate_p(1) = v; param_get(_params_handles.pitch_rate_i, &v); _params.rate_i(1) = v; param_get(_params_handles.pitch_rate_d, &v); _params.rate_d(1) = v; /* yaw gains */ param_get(_params_handles.yaw_p, &v); _params.att_p(2) = v; param_get(_params_handles.yaw_rate_p, &v); _params.rate_p(2) = v; param_get(_params_handles.yaw_rate_i, &v); _params.rate_i(2) = v; param_get(_params_handles.yaw_rate_d, &v); _params.rate_d(2) = v; param_get(_params_handles.yaw_ff, &_params.yaw_ff); param_get(_params_handles.yaw_rate_max, &_params.yaw_rate_max); _params.yaw_rate_max = math::radians(_params.yaw_rate_max); /* manual control scale */ param_get(_params_handles.man_roll_max, &_params.man_roll_max); param_get(_params_handles.man_pitch_max, &_params.man_pitch_max); param_get(_params_handles.man_yaw_max, &_params.man_yaw_max); _params.man_roll_max = math::radians(_params.man_roll_max); _params.man_pitch_max = math::radians(_params.man_pitch_max); _params.man_yaw_max = math::radians(_params.man_yaw_max); /* acro control scale */ param_get(_params_handles.acro_roll_max, &v); _params.acro_rate_max(0) = math::radians(v); param_get(_params_handles.acro_pitch_max, &v); _params.acro_rate_max(1) = math::radians(v); param_get(_params_handles.acro_yaw_max, &v); _params.acro_rate_max(2) = math::radians(v); _actuators_0_circuit_breaker_enabled = circuit_breaker_enabled("CBRK_RATE_CTRL", CBRK_RATE_CTRL_KEY); return OK; } void MulticopterAttitudeControl::parameter_update_poll() { bool updated; /* Check HIL state if vehicle status has changed */ orb_check(_params_sub, &updated); if (updated) { struct parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), _params_sub, ¶m_update); parameters_update(); } } void MulticopterAttitudeControl::vehicle_control_mode_poll() { bool updated; /* Check HIL state if vehicle status has changed */ orb_check(_v_control_mode_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_control_mode), _v_control_mode_sub, &_v_control_mode); } } void MulticopterAttitudeControl::vehicle_manual_poll() { bool updated; /* get pilots inputs */ orb_check(_manual_control_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_control_sp_sub, &_manual_control_sp); } } void MulticopterAttitudeControl::vehicle_attitude_setpoint_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_v_att_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _v_att_sp_sub, &_v_att_sp); } } void MulticopterAttitudeControl::vehicle_rates_setpoint_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_v_rates_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_sub, &_v_rates_sp); } } void MulticopterAttitudeControl::arming_status_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_armed_sub, &updated); if (updated) { orb_copy(ORB_ID(actuator_armed), _armed_sub, &_armed); } } void MulticopterAttitudeControl::task_main_trampoline(int argc, char *argv[]) { mc_att_control::g_control->task_main(); } void MulticopterAttitudeControl::task_main() { px4::NodeHandle n; /* * do subscriptions */ _v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); // PX4_SUBSCRIBE(n, vehicle_attitude_setpoint, MulticopterAttitudeControl::handle_vehicle_attitude, this 0); _v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint)); _v_att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _armed_sub = orb_subscribe(ORB_ID(actuator_armed)); /* initialize parameters cache */ parameters_update(); /* wakeup source: vehicle attitude */ struct pollfd fds[1]; fds[0].fd = _v_att_sub; fds[0].events = POLLIN; while (!_task_should_exit) { /* wait for up to 100ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit */ if (pret == 0) { continue; } /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); /* sleep a bit before next try */ usleep(100000); continue; } perf_begin(_loop_perf); /* run controller on attitude changes */ if (fds[0].revents & POLLIN) { static uint64_t last_run = 0; float dt = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too small (< 2ms) and too large (> 20ms) dt's */ if (dt < 0.002f) { dt = 0.002f; } else if (dt > 0.02f) { dt = 0.02f; } /* copy attitude topic */ orb_copy(ORB_ID(vehicle_attitude), _v_att_sub, &_v_att); /* check for updates in other topics */ parameter_update_poll(); vehicle_control_mode_poll(); arming_status_poll(); vehicle_manual_poll(); if (_v_control_mode.flag_control_attitude_enabled) { control_attitude(dt); /* publish the attitude setpoint if needed */ if (_publish_att_sp) { _v_att_sp.timestamp = hrt_absolute_time(); if (_att_sp_pub > 0) { orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_v_att_sp); } else { _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_v_att_sp); } } /* publish attitude rates setpoint */ _v_rates_sp.roll = _rates_sp(0); _v_rates_sp.pitch = _rates_sp(1); _v_rates_sp.yaw = _rates_sp(2); _v_rates_sp.thrust = _thrust_sp; _v_rates_sp.timestamp = hrt_absolute_time(); if (_v_rates_sp_pub > 0) { orb_publish(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_pub, &_v_rates_sp); } else { _v_rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_v_rates_sp); } } else { /* attitude controller disabled, poll rates setpoint topic */ if (_v_control_mode.flag_control_manual_enabled) { /* manual rates control - ACRO mode */ _rates_sp = math::Vector<3>(_manual_control_sp.y, -_manual_control_sp.x, _manual_control_sp.r).emult(_params.acro_rate_max); _thrust_sp = _manual_control_sp.z; /* reset yaw setpoint after ACRO */ _reset_yaw_sp = true; /* publish attitude rates setpoint */ _v_rates_sp.roll = _rates_sp(0); _v_rates_sp.pitch = _rates_sp(1); _v_rates_sp.yaw = _rates_sp(2); _v_rates_sp.thrust = _thrust_sp; _v_rates_sp.timestamp = hrt_absolute_time(); if (_v_rates_sp_pub > 0) { orb_publish(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_pub, &_v_rates_sp); } else { _v_rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_v_rates_sp); } } else { /* attitude controller disabled, poll rates setpoint topic */ vehicle_rates_setpoint_poll(); _rates_sp(0) = _v_rates_sp.roll; _rates_sp(1) = _v_rates_sp.pitch; _rates_sp(2) = _v_rates_sp.yaw; _thrust_sp = _v_rates_sp.thrust; } } if (_v_control_mode.flag_control_rates_enabled) { control_attitude_rates(dt); /* publish actuator controls */ _actuators.control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f; _actuators.control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f; _actuators.control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f; _actuators.control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f; _actuators.timestamp = hrt_absolute_time(); if (!_actuators_0_circuit_breaker_enabled) { if (_actuators_0_pub > 0) { orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators); } else { _actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators); } } } } perf_end(_loop_perf); } warnx("exit"); _control_task = -1; _exit(0); } void MulticopterAttitudeControl::handle_vehicle_attitude(const PX4_TOPIC_T(vehicle_attitude) &msg) { PX4_INFO("RCHandler class heard: [%llu]", msg.timestamp); } int MulticopterAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("mc_att_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2000, (main_t)&MulticopterAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } PX4_MAIN_FUNCTION(mc_att_control) { px4::init(argc, argv, "mc_att_control"); if (argc < 1) { errx(1, "usage: mc_att_control {start|stop|status}"); } if (!strcmp(argv[1], "start")) { if (mc_att_control::g_control != nullptr) { errx(1, "already running"); } mc_att_control::g_control = new MulticopterAttitudeControl; if (mc_att_control::g_control == nullptr) { errx(1, "alloc failed"); } if (OK != mc_att_control::g_control->start()) { delete mc_att_control::g_control; mc_att_control::g_control = nullptr; err(1, "start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (mc_att_control::g_control == nullptr) { errx(1, "not running"); } delete mc_att_control::g_control; mc_att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (mc_att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }