/**************************************************************************** * * Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved. * Author: @author Tobias Naegeli * @author Lorenz Meier * @author Anton Babushkin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_att_control_main.c * Multicopter attitude controller. * * The controller has two loops: P loop for angular error and PD loop for angular rate error. * Desired rotation calculated keeping in mind that yaw response is normally slower than roll/pitch. * For small deviations controller rotates copter to have shortest path of thrust vector and independently rotates around yaw, * so actual rotation axis is not constant. For large deviations controller rotates copter around fixed axis. * These two approaches fused seamlessly with weight depending on angular error. * When thrust vector directed near-horizontally (e.g. roll ~= PI/2) yaw setpoint ignored because of singularity. * Controller doesn't use Euler angles for work, they generated only for more human-friendly control and logging. * If rotation matrix setpoint is invalid it will be generated from Euler angles for compatibility with old position controllers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Multicopter attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int mc_att_control_main(int argc, char *argv[]); #define MIN_TAKEOFF_THROTTLE 0.3f #define YAW_DEADZONE 0.05f #define RATES_I_LIMIT 0.5f class MulticopterAttitudeControl { public: /** * Constructor */ MulticopterAttitudeControl(); /** * Destructor, also kills the sensors task. */ ~MulticopterAttitudeControl(); /** * Start the sensors task. * * @return OK on success. */ int start(); private: bool _task_should_exit; /**< if true, sensor task should exit */ int _control_task; /**< task handle for sensor task */ int _v_att_sub; /**< vehicle attitude subscription */ int _v_att_sp_sub; /**< vehicle attitude setpoint subscription */ int _v_rates_sp_sub; /**< vehicle rates setpoint subscription */ int _v_control_mode_sub; /**< vehicle control mode subscription */ int _params_sub; /**< parameter updates subscription */ int _manual_control_sp_sub; /**< manual control setpoint subscription */ int _armed_sub; /**< arming status subscription */ orb_advert_t _att_sp_pub; /**< attitude setpoint publication */ orb_advert_t _v_rates_sp_pub; /**< rate setpoint publication */ orb_advert_t _actuators_0_pub; /**< attitude actuator controls publication */ struct vehicle_attitude_s _v_att; /**< vehicle attitude */ struct vehicle_attitude_setpoint_s _v_att_sp; /**< vehicle attitude setpoint */ struct vehicle_rates_setpoint_s _v_rates_sp; /**< vehicle rates setpoint */ struct manual_control_setpoint_s _manual_control_sp; /**< manual control setpoint */ struct vehicle_control_mode_s _v_control_mode; /**< vehicle control mode */ struct actuator_controls_s _actuators; /**< actuator controls */ struct actuator_armed_s _armed; /**< actuator arming status */ perf_counter_t _loop_perf; /**< loop performance counter */ math::Matrix<3, 3> _R_sp; /**< attitude setpoint rotation matrix */ math::Matrix<3, 3> _R; /**< rotation matrix for current state */ math::Vector<3> _rates_prev; /**< angular rates on previous step */ math::Vector<3> _rates_sp; /**< angular rates setpoint */ math::Vector<3> _rates_int; /**< angular rates integral error */ float _thrust_sp; /**< thrust setpoint */ math::Vector<3> _att_control; /**< attitude control vector */ math::Matrix<3, 3> I; /**< identity matrix */ bool _reset_yaw_sp; /**< reset yaw setpoint flag */ struct { param_t roll_p; param_t roll_rate_p; param_t roll_rate_i; param_t roll_rate_d; param_t pitch_p; param_t pitch_rate_p; param_t pitch_rate_i; param_t pitch_rate_d; param_t yaw_p; param_t yaw_rate_p; param_t yaw_rate_i; param_t yaw_rate_d; param_t yaw_ff; param_t rc_scale_yaw; } _params_handles; /**< handles for interesting parameters */ struct { math::Vector<3> att_p; /**< P gain for angular error */ math::Vector<3> rate_p; /**< P gain for angular rate error */ math::Vector<3> rate_i; /**< I gain for angular rate error */ math::Vector<3> rate_d; /**< D gain for angular rate error */ float yaw_ff; /**< yaw control feed-forward */ float rc_scale_yaw; } _params; /** * Update our local parameter cache. */ int parameters_update(); /** * Check for parameter update and handle it. */ void parameter_update_poll(); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for attitude setpoint updates. */ void vehicle_attitude_setpoint_poll(); /** * Check for rates setpoint updates. */ void vehicle_rates_setpoint_poll(); /** * Check for arming status updates. */ void arming_status_poll(); /** * Attitude controller. */ void control_attitude(float dt); /** * Attitude rates controller. */ void control_attitude_rates(float dt); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main sensor collection task. */ void task_main() __attribute__((noreturn)); }; namespace mc_att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; MulticopterAttitudeControl *g_control; } MulticopterAttitudeControl::MulticopterAttitudeControl() : _task_should_exit(false), _control_task(-1), /* subscriptions */ _v_att_sub(-1), _v_att_sp_sub(-1), _v_control_mode_sub(-1), _params_sub(-1), _manual_control_sp_sub(-1), _armed_sub(-1), /* publications */ _att_sp_pub(-1), _v_rates_sp_pub(-1), _actuators_0_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")) { memset(&_v_att, 0, sizeof(_v_att)); memset(&_v_att_sp, 0, sizeof(_v_att_sp)); memset(&_manual_control_sp, 0, sizeof(_manual_control_sp)); memset(&_v_control_mode, 0, sizeof(_v_control_mode)); memset(&_armed, 0, sizeof(_armed)); _params.att_p.zero(); _params.rate_p.zero(); _params.rate_i.zero(); _params.rate_d.zero(); _R_sp.identity(); _R.identity(); _rates_prev.zero(); _rates_sp.zero(); _rates_int.zero(); _thrust_sp = 0.0f; _att_control.zero(); I.identity(); _params_handles.roll_p = param_find("MC_ROLL_P"); _params_handles.roll_rate_p = param_find("MC_ROLLRATE_P"); _params_handles.roll_rate_i = param_find("MC_ROLLRATE_I"); _params_handles.roll_rate_d = param_find("MC_ROLLRATE_D"); _params_handles.pitch_p = param_find("MC_PITCH_P"); _params_handles.pitch_rate_p = param_find("MC_PITCHRATE_P"); _params_handles.pitch_rate_i = param_find("MC_PITCHRATE_I"); _params_handles.pitch_rate_d = param_find("MC_PITCHRATE_D"); _params_handles.yaw_p = param_find("MC_YAW_P"); _params_handles.yaw_rate_p = param_find("MC_YAWRATE_P"); _params_handles.yaw_rate_i = param_find("MC_YAWRATE_I"); _params_handles.yaw_rate_d = param_find("MC_YAWRATE_D"); _params_handles.yaw_ff = param_find("MC_YAW_FF"); _params_handles.rc_scale_yaw = param_find("RC_SCALE_YAW"); /* fetch initial parameter values */ parameters_update(); } MulticopterAttitudeControl::~MulticopterAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } mc_att_control::g_control = nullptr; } int MulticopterAttitudeControl::parameters_update() { float v; /* roll */ param_get(_params_handles.roll_p, &v); _params.att_p(0) = v; param_get(_params_handles.roll_rate_p, &v); _params.rate_p(0) = v; param_get(_params_handles.roll_rate_i, &v); _params.rate_i(0) = v; param_get(_params_handles.roll_rate_d, &v); _params.rate_d(0) = v; /* pitch */ param_get(_params_handles.pitch_p, &v); _params.att_p(1) = v; param_get(_params_handles.pitch_rate_p, &v); _params.rate_p(1) = v; param_get(_params_handles.pitch_rate_i, &v); _params.rate_i(1) = v; param_get(_params_handles.pitch_rate_d, &v); _params.rate_d(1) = v; /* yaw */ param_get(_params_handles.yaw_p, &v); _params.att_p(2) = v; param_get(_params_handles.yaw_rate_p, &v); _params.rate_p(2) = v; param_get(_params_handles.yaw_rate_i, &v); _params.rate_i(2) = v; param_get(_params_handles.yaw_rate_d, &v); _params.rate_d(2) = v; param_get(_params_handles.yaw_ff, &_params.yaw_ff); param_get(_params_handles.rc_scale_yaw, &_params.rc_scale_yaw); return OK; } void MulticopterAttitudeControl::parameter_update_poll() { bool updated; /* Check HIL state if vehicle status has changed */ orb_check(_params_sub, &updated); if (updated) { struct parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), _params_sub, ¶m_update); parameters_update(); } } void MulticopterAttitudeControl::vehicle_control_mode_poll() { bool updated; /* Check HIL state if vehicle status has changed */ orb_check(_v_control_mode_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_control_mode), _v_control_mode_sub, &_v_control_mode); } } void MulticopterAttitudeControl::vehicle_manual_poll() { bool updated; /* get pilots inputs */ orb_check(_manual_control_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_control_sp_sub, &_manual_control_sp); } } void MulticopterAttitudeControl::vehicle_attitude_setpoint_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_v_att_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _v_att_sp_sub, &_v_att_sp); } } void MulticopterAttitudeControl::vehicle_rates_setpoint_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_v_rates_sp_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_sub, &_v_rates_sp); } } void MulticopterAttitudeControl::arming_status_poll() { /* check if there is a new setpoint */ bool updated; orb_check(_armed_sub, &updated); if (updated) { orb_copy(ORB_ID(actuator_armed), _armed_sub, &_armed); } } /* * Attitude controller. * Input: 'manual_control_setpoint' and 'vehicle_attitude_setpoint' topics (depending on mode) * Output: '_rates_sp' vector, '_thrust_sp', 'vehicle_attitude_setpoint' topic (for manual modes) */ void MulticopterAttitudeControl::control_attitude(float dt) { float yaw_sp_move_rate = 0.0f; bool publish_att_sp = false; if (_v_control_mode.flag_control_manual_enabled) { /* manual input, set or modify attitude setpoint */ if (_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_climb_rate_enabled) { /* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */ vehicle_attitude_setpoint_poll(); } if (!_v_control_mode.flag_control_climb_rate_enabled) { /* pass throttle directly if not in altitude stabilized mode */ _v_att_sp.thrust = _manual_control_sp.throttle; publish_att_sp = true; } if (!_armed.armed) { /* reset yaw setpoint when disarmed */ _reset_yaw_sp = true; } /* move yaw setpoint in all modes */ if (_v_att_sp.thrust < 0.1f) { // TODO //if (_status.condition_landed) { /* reset yaw setpoint if on ground */ // reset_yaw_sp = true; //} } else { float yaw_dz_scaled = YAW_DEADZONE * _params.rc_scale_yaw; if (_params.rc_scale_yaw > 0.001f && fabs(_manual_control_sp.yaw) > yaw_dz_scaled) { /* move yaw setpoint */ yaw_sp_move_rate = _manual_control_sp.yaw / _params.rc_scale_yaw; if (_manual_control_sp.yaw > 0.0f) { yaw_sp_move_rate -= YAW_DEADZONE; } else { yaw_sp_move_rate += YAW_DEADZONE; } yaw_sp_move_rate *= _params.rc_scale_yaw; _v_att_sp.yaw_body = _wrap_pi(_v_att_sp.yaw_body + yaw_sp_move_rate * dt); _v_att_sp.R_valid = false; publish_att_sp = true; } } /* reset yaw setpint to current position if needed */ if (_reset_yaw_sp) { _reset_yaw_sp = false; _v_att_sp.yaw_body = _v_att.yaw; _v_att_sp.R_valid = false; publish_att_sp = true; } if (!_v_control_mode.flag_control_velocity_enabled) { /* update attitude setpoint if not in position control mode */ _v_att_sp.roll_body = _manual_control_sp.roll; _v_att_sp.pitch_body = _manual_control_sp.pitch; _v_att_sp.R_valid = false; publish_att_sp = true; } } else { /* in non-manual mode use 'vehicle_attitude_setpoint' topic */ vehicle_attitude_setpoint_poll(); /* reset yaw setpoint after non-manual control mode */ _reset_yaw_sp = true; } _thrust_sp = _v_att_sp.thrust; /* construct attitude setpoint rotation matrix */ if (_v_att_sp.R_valid) { /* rotation matrix in _att_sp is valid, use it */ _R_sp.set(&_v_att_sp.R_body[0][0]); } else { /* rotation matrix in _att_sp is not valid, use euler angles instead */ _R_sp.from_euler(_v_att_sp.roll_body, _v_att_sp.pitch_body, _v_att_sp.yaw_body); /* copy rotation matrix back to setpoint struct */ memcpy(&_v_att_sp.R_body[0][0], &_R_sp.data[0][0], sizeof(_v_att_sp.R_body)); _v_att_sp.R_valid = true; } /* publish the attitude setpoint if needed */ if (publish_att_sp) { _v_att_sp.timestamp = hrt_absolute_time(); if (_att_sp_pub > 0) { orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_v_att_sp); } else { _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_v_att_sp); } } /* rotation matrix for current state */ _R.set(_v_att.R); /* all input data is ready, run controller itself */ /* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */ math::Vector<3> R_z(_R(0, 2), _R(1, 2), _R(2, 2)); math::Vector<3> R_sp_z(_R_sp(0, 2), _R_sp(1, 2), _R_sp(2, 2)); /* axis and sin(angle) of desired rotation */ math::Vector<3> e_R = _R.transposed() * (R_z % R_sp_z); /* calculate angle error */ float e_R_z_sin = e_R.length(); float e_R_z_cos = R_z * R_sp_z; /* calculate weight for yaw control */ float yaw_w = _R_sp(2, 2) * _R_sp(2, 2); /* calculate rotation matrix after roll/pitch only rotation */ math::Matrix<3, 3> R_rp; if (e_R_z_sin > 0.0f) { /* get axis-angle representation */ float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos); math::Vector<3> e_R_z_axis = e_R / e_R_z_sin; e_R = e_R_z_axis * e_R_z_angle; /* cross product matrix for e_R_axis */ math::Matrix<3, 3> e_R_cp; e_R_cp.zero(); e_R_cp(0, 1) = -e_R_z_axis(2); e_R_cp(0, 2) = e_R_z_axis(1); e_R_cp(1, 0) = e_R_z_axis(2); e_R_cp(1, 2) = -e_R_z_axis(0); e_R_cp(2, 0) = -e_R_z_axis(1); e_R_cp(2, 1) = e_R_z_axis(0); /* rotation matrix for roll/pitch only rotation */ R_rp = _R * (I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos)); } else { /* zero roll/pitch rotation */ R_rp = _R; } /* R_rp and _R_sp has the same Z axis, calculate yaw error */ math::Vector<3> R_sp_x(_R_sp(0, 0), _R_sp(1, 0), _R_sp(2, 0)); math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0)); e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w; if (e_R_z_cos < 0.0f) { /* for large thrust vector rotations use another rotation method: * calculate angle and axis for R -> R_sp rotation directly */ math::Quaternion q; q.from_dcm(_R.transposed() * _R_sp); math::Vector<3> e_R_d = q.imag(); e_R_d.normalize(); e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0)); /* use fusion of Z axis based rotation and direct rotation */ float direct_w = e_R_z_cos * e_R_z_cos * yaw_w; e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w; } /* calculate angular rates setpoint */ _rates_sp = _params.att_p.emult(e_R); /* feed forward yaw setpoint rate */ _rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff; } /* * Attitude rates controller. * Input: '_rates_sp' vector, '_thrust_sp' * Output: '_att_control' vector */ void MulticopterAttitudeControl::control_attitude_rates(float dt) { /* reset integral if disarmed */ if (!_armed.armed) { _rates_int.zero(); } /* current body angular rates */ math::Vector<3> rates; rates(0) = _v_att.rollspeed; rates(1) = _v_att.pitchspeed; rates(2) = _v_att.yawspeed; /* angular rates error */ math::Vector<3> rates_err = _rates_sp - rates; _att_control = _params.rate_p.emult(rates_err) + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int; _rates_prev = rates; /* update integral only if not saturated on low limit */ if (_thrust_sp > 0.1f) { for (int i = 0; i < 3; i++) { if (fabsf(_att_control(i)) < _thrust_sp) { float rate_i = _rates_int(i) + _params.rate_i(i) * rates_err(i) * dt; if (isfinite(rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT && _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) { _rates_int(i) = rate_i; } } } } } void MulticopterAttitudeControl::task_main_trampoline(int argc, char *argv[]) { mc_att_control::g_control->task_main(); } void MulticopterAttitudeControl::task_main() { warnx("started"); fflush(stdout); /* * do subscriptions */ _v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint)); _v_att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _armed_sub = orb_subscribe(ORB_ID(actuator_armed)); /* rate limit attitude updates to 200Hz, failsafe against spam, normally runs at the same rate as attitude estimator */ orb_set_interval(_v_att_sub, 5); /* initialize parameters cache */ parameters_update(); /* wakeup source: vehicle attitude */ struct pollfd fds[1]; fds[0].fd = _v_att_sub; fds[0].events = POLLIN; while (!_task_should_exit) { /* wait for up to 100ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); /* sleep a bit before next try */ usleep(100000); continue; } perf_begin(_loop_perf); /* run controller on attitude changes */ if (fds[0].revents & POLLIN) { static uint64_t last_run = 0; float dt = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too small (< 2ms) and too large (> 20ms) dt's */ if (dt < 0.002f) { dt = 0.002f; } else if (dt > 0.02f) { dt = 0.02f; } /* copy attitude topic */ orb_copy(ORB_ID(vehicle_attitude), _v_att_sub, &_v_att); /* check for updates in other topics */ parameter_update_poll(); vehicle_control_mode_poll(); arming_status_poll(); vehicle_manual_poll(); if (_v_control_mode.flag_control_attitude_enabled) { control_attitude(dt); /* publish attitude rates setpoint */ _v_rates_sp.roll = _rates_sp(0); _v_rates_sp.pitch = _rates_sp(1); _v_rates_sp.yaw = _rates_sp(2); _v_rates_sp.thrust = _thrust_sp; _v_rates_sp.timestamp = hrt_absolute_time(); if (_v_rates_sp_pub > 0) { orb_publish(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_pub, &_v_rates_sp); } else { _v_rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_v_rates_sp); } } else { /* attitude controller disabled */ // TODO poll 'attitude_rates_setpoint' topic _rates_sp.zero(); _thrust_sp = 0.0f; } if (_v_control_mode.flag_control_rates_enabled) { control_attitude_rates(dt); /* publish actuator controls */ _actuators.control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f; _actuators.control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f; _actuators.control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f; _actuators.control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f; _actuators.timestamp = hrt_absolute_time(); if (_actuators_0_pub > 0) { orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators); } else { _actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators); } } } perf_end(_loop_perf); } warnx("exit"); _control_task = -1; _exit(0); } int MulticopterAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("mc_att_control", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&MulticopterAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } int mc_att_control_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: mc_att_control {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (mc_att_control::g_control != nullptr) errx(1, "already running"); mc_att_control::g_control = new MulticopterAttitudeControl; if (mc_att_control::g_control == nullptr) errx(1, "alloc failed"); if (OK != mc_att_control::g_control->start()) { delete mc_att_control::g_control; mc_att_control::g_control = nullptr; err(1, "start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (mc_att_control::g_control == nullptr) errx(1, "not running"); delete mc_att_control::g_control; mc_att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (mc_att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }