/**************************************************************************** * * Copyright (c) 2013 PX4 Development Team. All rights reserved. * Author: Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_att_control_vector_main.c * Implementation of a multicopter attitude controller based on desired thrust vector. * * @author Tobias Naegeli * @author Lorenz Meier * * Please refer to the library files for the authors and acknowledgements of * the used control library functions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include #include "ecl_mc_att_control_vector.h" /** * Multicopter attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int mc_att_control_vector_main(int argc, char *argv[]); class MulticopterAttitudeControl { public: /** * Constructor */ MulticopterAttitudeControl(); /** * Destructor, also kills the sensors task. */ ~MulticopterAttitudeControl(); /** * Start the sensors task. * * @return OK on success. */ int start(); private: bool _task_should_exit; /**< if true, sensor task should exit */ int _control_task; /**< task handle for sensor task */ int _att_sub; /**< vehicle attitude subscription */ int _accel_sub; /**< accelerometer subscription */ int _att_sp_sub; /**< vehicle attitude setpoint */ int _attitude_sub; /**< raw rc channels data subscription */ int _airspeed_sub; /**< airspeed subscription */ int _vstatus_sub; /**< vehicle status subscription */ int _params_sub; /**< notification of parameter updates */ int _manual_sub; /**< notification of manual control updates */ int _arming_sub; /**< arming status of outputs */ orb_advert_t _rate_sp_pub; /**< rate setpoint publication */ orb_advert_t _actuators_0_pub; /**< actuator control group 0 setpoint */ struct vehicle_attitude_s _att; /**< vehicle attitude */ struct accel_report _accel; /**< body frame accelerations */ struct vehicle_attitude_setpoint_s _att_sp; /**< vehicle attitude setpoint */ struct manual_control_setpoint_s _manual; /**< r/c channel data */ struct airspeed_s _airspeed; /**< airspeed */ struct vehicle_status_s _vstatus; /**< vehicle status */ struct actuator_controls_s _actuators; /**< actuator control inputs */ struct actuator_armed_s _arming; /**< actuator arming status */ perf_counter_t _loop_perf; /**< loop performance counter */ bool _setpoint_valid; /**< flag if the position control setpoint is valid */ bool _airspeed_valid; /**< flag if the airspeed measurement is valid */ // ECL_L1_Pos_Control _att_control; struct { float yaw_p; float yaw_i; float yaw_d; float yaw_imax; float att_p; float att_i; float att_d; float att_imax; float att_rate_p; float yaw_rate_p; } _parameters; /**< local copies of interesting parameters */ struct { param_t yaw_p; param_t yaw_i; param_t yaw_d; param_t yaw_imax; param_t att_p; param_t att_i; param_t att_d; param_t att_imax; param_t att_rate_p; param_t yaw_rate_p; } _parameter_handles; /**< handles for interesting parameters */ ECL_MCAttControlVector _att_control; /** * Update our local parameter cache. */ int parameters_update(); /** * Update control outputs * */ void control_update(); /** * Check for changes in vehicle status. */ void vehicle_status_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for airspeed updates. */ bool vehicle_airspeed_poll(); /** * Check for accel updates. */ void vehicle_accel_poll(); /** * Check for set triplet updates. */ void vehicle_setpoint_poll(); /** * Check for arming status updates. */ void arming_status_poll(); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main sensor collection task. */ void task_main() __attribute__((noreturn)); }; namespace att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; MulticopterAttitudeControl *g_control; } MulticopterAttitudeControl::MulticopterAttitudeControl() : _task_should_exit(false), _control_task(-1), /* subscriptions */ _att_sub(-1), _accel_sub(-1), _airspeed_sub(-1), _vstatus_sub(-1), _params_sub(-1), _manual_sub(-1), _arming_sub(-1), /* publications */ _rate_sp_pub(-1), _actuators_0_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")), /* states */ _setpoint_valid(false), _airspeed_valid(false) { _parameter_handles.yaw_p = param_find("MC_YAWPOS_P"); _parameter_handles.yaw_i = param_find("MC_YAWPOS_I"); _parameter_handles.yaw_d = param_find("MC_YAWPOS_D"); _parameter_handles.yaw_imax = param_find("MC_YAWPOS_IMAX"); _parameter_handles.att_p = param_find("MC_ATT_P"); _parameter_handles.att_i = param_find("MC_ATT_I"); _parameter_handles.att_d = param_find("MC_ATT_D"); _parameter_handles.att_imax = param_find("MC_ATT_IMAX"); _parameter_handles.att_rate_p = param_find("MC_ATTRATE_P"); _parameter_handles.yaw_rate_p = param_find("MC_YAWRATE_P"); /* fetch initial parameter values */ parameters_update(); } MulticopterAttitudeControl::~MulticopterAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } att_control::g_control = nullptr; } int MulticopterAttitudeControl::parameters_update() { //param_get(_parameter_handles.tconst, &(_parameters.tconst)); param_get(_parameter_handles.yaw_p, &(_parameters.yaw_p)); param_get(_parameter_handles.yaw_i, &(_parameters.yaw_i)); param_get(_parameter_handles.yaw_d, &(_parameters.yaw_d)); param_get(_parameter_handles.yaw_imax, &(_parameters.yaw_imax)); param_get(_parameter_handles.att_p, &(_parameters.att_p)); param_get(_parameter_handles.att_i, &(_parameters.att_i)); param_get(_parameter_handles.att_d, &(_parameters.att_d)); param_get(_parameter_handles.att_imax, &(_parameters.att_imax)); param_get(_parameter_handles.yaw_rate_p, &(_parameters.yaw_rate_p)); param_get(_parameter_handles.att_rate_p, &(_parameters.att_rate_p)); /* class control parameters */ // _att_ctrl.set_tau(_parameters.p_tconst); // _att_ctrl.set_k_p(math::radians(_parameters.p_p)); // _att_ctrl.set_k_i(math::radians(_parameters.p_i)); // _att_ctrl.set_k_d(math::radians(_parameters.p_d)); return OK; } void MulticopterAttitudeControl::vehicle_status_poll() { bool vstatus_updated; /* Check HIL state if vehicle status has changed */ orb_check(_vstatus_sub, &vstatus_updated); if (vstatus_updated) { orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &_vstatus); } } void MulticopterAttitudeControl::vehicle_manual_poll() { bool manual_updated; /* get pilots inputs */ orb_check(_manual_sub, &manual_updated); if (manual_updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_sub, &_manual); } } bool MulticopterAttitudeControl::vehicle_airspeed_poll() { /* check if there is a new position */ bool airspeed_updated; orb_check(_airspeed_sub, &airspeed_updated); if (airspeed_updated) { orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed); return true; } return false; } void MulticopterAttitudeControl::vehicle_accel_poll() { /* check if there is a new position */ bool accel_updated; orb_check(_accel_sub, &accel_updated); if (accel_updated) { orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel); } } void MulticopterAttitudeControl::vehicle_setpoint_poll() { /* check if there is a new setpoint */ bool att_sp_updated; orb_check(_att_sp_sub, &att_sp_updated); if (att_sp_updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _att_sp_sub, &_att_sp); _setpoint_valid = true; } } void MulticopterAttitudeControl::arming_status_poll() { /* check if there is a new setpoint */ bool arming_updated; orb_check(_arming_sub, &arming_updated); if (arming_updated) { orb_copy(ORB_ID(actuator_armed), _arming_sub, &_arming); } } void MulticopterAttitudeControl::task_main_trampoline(int argc, char *argv[]) { att_control::g_control->task_main(); } void MulticopterAttitudeControl::task_main() { /* inform about start */ warnx("Initializing.."); fflush(stdout); /* * do subscriptions */ _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _accel_sub = orb_subscribe(ORB_ID(sensor_accel)); _airspeed_sub = orb_subscribe(ORB_ID(airspeed)); _vstatus_sub = orb_subscribe(ORB_ID(vehicle_status)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _arming_sub = orb_subscribe(ORB_ID(actuator_armed)); /* rate limit vehicle status updates to 5Hz */ orb_set_interval(_vstatus_sub, 200); orb_set_interval(_att_sub, 100); parameters_update(); /* initialize values of critical structs until first regular update */ _arming.armed = false; /* get an initial update for all sensor and status data */ (void)vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_status_poll(); vehicle_manual_poll(); arming_status_poll(); /* wakeup source(s) */ struct pollfd fds[2]; /* Setup of loop */ fds[0].fd = _params_sub; fds[0].events = POLLIN; fds[1].fd = _att_sub; fds[1].events = POLLIN; while (!_task_should_exit) { /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); /* update parameters from storage */ parameters_update(); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too large deltaT's */ if (deltaT > 1.0f) deltaT = 0.01f; /* load local copies */ orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att); _airspeed_valid = vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); /* check vehicle status for changes to publication state */ vehicle_status_poll(); /* check for arming status changes */ arming_status_poll(); vehicle_manual_poll(); /* lock integrator until armed */ bool lock_integrator; if (_arming.armed) { lock_integrator = false; } else { lock_integrator = true; } /* decide if in auto or full manual control */ float roll_sp, pitch_sp; float throttle_sp = 0.0f; float yaw_sp = 0.0f; if (_vstatus.state_machine == SYSTEM_STATE_MANUAL || (_vstatus.state_machine == SYSTEM_STATE_STABILIZED)) { /* * Scale down roll and pitch as the setpoints are radians * and a typical remote can only do 45 degrees, the mapping is * -1..+1 to -45..+45 degrees or -0.75..+0.75 radians. * * With this mapping the stick angle is a 1:1 representation of * the commanded attitude. If more than 45 degrees are desired, * a scaling parameter can be applied to the remote. */ roll_sp = _manual.roll * 0.75f; pitch_sp = _manual.pitch * 0.75f; yaw_sp = _manual.yaw; throttle_sp = _manual.throttle; } else if (_vstatus.state_machine == SYSTEM_STATE_AUTO) { roll_sp = _att_sp.roll_body; pitch_sp = _att_sp.pitch_body; yaw_sp = _att_sp.yaw_body; throttle_sp = _att_sp.thrust; } // XXX take rotation matrix directly from att_sp for auto mode math::Vector3 F_des(roll_sp, pitch_sp, yaw_sp); math::Vector3 rates_des; math::Dcm R_nb(_att.R); math::Vector3 angular_rates(_att.rollspeed, _att.pitchspeed, _att.yawspeed); _att_control.control(deltaT, R_nb, _att.yaw, F_des, _parameters.att_p, _parameters.att_d, _parameters.att_i, angular_rates, rates_des, throttle_sp); float roll_out = _parameters.att_rate_p * rates_des(0); float pitch_out = _parameters.att_rate_p * rates_des(1); float yaw_out = _parameters.yaw_rate_p * rates_des(2); _actuators.control[0] = (isfinite(roll_out)) ? roll_out : 0.0f; _actuators.control[1] = (isfinite(pitch_out)) ? pitch_out : 0.0f; _actuators.control[2] = (isfinite(yaw_out)) ? yaw_out : 0.0f; /* throttle passed through */ _actuators.control[3] = (isfinite(throttle_sp)) ? throttle_sp : 0.0f; /* * Lazily publish the rate setpoint (for analysis, the actuators are published below) * only once available */ vehicle_rates_setpoint_s rates_sp; rates_sp.roll = rates_des(0); rates_sp.pitch = rates_des(1); rates_sp.yaw = rates_des(2); rates_sp.timestamp = hrt_absolute_time(); if (_rate_sp_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_rates_setpoint), _actuators_0_pub, &rates_sp); } else { /* advertise and publish */ _rate_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp); } /* lazily publish the setpoint only once available */ _actuators.timestamp = hrt_absolute_time(); if (_actuators_0_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators); } else { /* advertise and publish */ _actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators); } } perf_end(_loop_perf); } warnx("exiting.\n"); _control_task = -1; _exit(0); } int MulticopterAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("mc_att_control_vector", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&MulticopterAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } int mc_att_control_vector_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: mc_att_control_vector {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (att_control::g_control != nullptr) errx(1, "already running"); att_control::g_control = new MulticopterAttitudeControl; if (att_control::g_control == nullptr) errx(1, "alloc failed"); if (OK != att_control::g_control->start()) { delete att_control::g_control; att_control::g_control = nullptr; err(1, "start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (att_control::g_control == nullptr) errx(1, "not running"); delete att_control::g_control; att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }