/**************************************************************************** * * Copyright (c) 2013 PX4 Development Team. All rights reserved. * Author: Tobias Naegeli * Lorenz Meier * Anton Babushkin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_att_control_vector_main.c * Implementation of a multicopter attitude controller based on desired rotation matrix. * * References * [1] Daniel Mellinger and Vijay Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors", * http://www.seas.upenn.edu/~dmel/mellingerICRA11.pdf * * @author Tobias Naegeli * @author Lorenz Meier * @author Anton Babushkin * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * Multicopter attitude control app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int mc_att_control_vector_main(int argc, char *argv[]); #define MIN_TAKEOFF_THROTTLE 0.3f #define YAW_DEADZONE 0.01f class MulticopterAttitudeControl { public: /** * Constructor */ MulticopterAttitudeControl(); /** * Destructor, also kills the sensors task. */ ~MulticopterAttitudeControl(); /** * Start the sensors task. * * @return OK on success. */ int start(); private: bool _task_should_exit; /**< if true, sensor task should exit */ int _control_task; /**< task handle for sensor task */ int _att_sub; /**< vehicle attitude subscription */ int _att_sp_sub; /**< vehicle attitude setpoint */ int _control_mode_sub; /**< vehicle control mode subscription */ int _params_sub; /**< notification of parameter updates */ int _manual_sub; /**< notification of manual control updates */ int _arming_sub; /**< arming status of outputs */ orb_advert_t _att_sp_pub; /**< attitude setpoint publication */ orb_advert_t _rates_sp_pub; /**< rate setpoint publication */ orb_advert_t _actuators_0_pub; /**< actuator control group 0 setpoint */ struct vehicle_attitude_s _att; /**< vehicle attitude */ struct vehicle_attitude_setpoint_s _att_sp; /**< vehicle attitude setpoint */ struct manual_control_setpoint_s _manual; /**< r/c channel data */ struct vehicle_control_mode_s _control_mode; /**< vehicle control mode */ struct actuator_controls_s _actuators; /**< actuator control inputs */ struct actuator_armed_s _arming; /**< actuator arming status */ struct vehicle_rates_setpoint_s _rates_sp; /**< vehicle rates setpoint */ perf_counter_t _loop_perf; /**< loop performance counter */ math::Matrix<3, 3> _K; /**< diagonal gain matrix for position error */ math::Matrix<3, 3> _K_rate_p; /**< diagonal gain matrix for angular rate error */ math::Matrix<3, 3> _K_rate_d; /**< diagonal gain matrix for angular rate derivative */ math::Vector<3> _rates_prev; /**< angular rates on previous step */ struct { param_t att_p; param_t att_rate_p; param_t att_rate_d; param_t yaw_p; param_t yaw_rate_p; param_t yaw_rate_d; } _parameter_handles; /**< handles for interesting parameters */ /** * Update our local parameter cache. */ int parameters_update(); /** * Update control outputs */ void control_update(); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in manual inputs. */ void vehicle_manual_poll(); /** * Check for set triplet updates. */ void vehicle_setpoint_poll(); /** * Check for arming status updates. */ void arming_status_poll(); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main sensor collection task. */ void task_main() __attribute__((noreturn)); }; namespace att_control { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; MulticopterAttitudeControl *g_control; } MulticopterAttitudeControl::MulticopterAttitudeControl() : _task_should_exit(false), _control_task(-1), /* subscriptions */ _att_sub(-1), _att_sp_sub(-1), _control_mode_sub(-1), _params_sub(-1), _manual_sub(-1), _arming_sub(-1), /* publications */ _att_sp_pub(-1), _rates_sp_pub(-1), _actuators_0_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "fw att control")) { memset(&_att, 0, sizeof(_att)); memset(&_att_sp, 0, sizeof(_att_sp)); memset(&_manual, 0, sizeof(_manual)); memset(&_control_mode, 0, sizeof(_control_mode)); memset(&_arming, 0, sizeof(_arming)); _K.zero(); _K_rate_p.zero(); _K_rate_d.zero(); _rates_prev.zero(); _parameter_handles.att_p = param_find("MC_ATT_P"); _parameter_handles.att_rate_p = param_find("MC_ATTRATE_P"); _parameter_handles.att_rate_d = param_find("MC_ATTRATE_D"); _parameter_handles.yaw_p = param_find("MC_YAWPOS_P"); _parameter_handles.yaw_rate_p = param_find("MC_YAWRATE_P"); _parameter_handles.yaw_rate_d = param_find("MC_YAWRATE_D"); /* fetch initial parameter values */ parameters_update(); } MulticopterAttitudeControl::~MulticopterAttitudeControl() { if (_control_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_control_task); break; } } while (_control_task != -1); } att_control::g_control = nullptr; } int MulticopterAttitudeControl::parameters_update() { float att_p; float att_rate_p; float att_rate_d; float yaw_p; float yaw_rate_p; float yaw_rate_d; param_get(_parameter_handles.att_p, &att_p); param_get(_parameter_handles.att_rate_p, &att_rate_p); param_get(_parameter_handles.att_rate_d, &att_rate_d); param_get(_parameter_handles.yaw_p, &yaw_p); param_get(_parameter_handles.yaw_rate_p, &yaw_rate_p); param_get(_parameter_handles.yaw_rate_d, &yaw_rate_d); _K(0, 0) = att_p; _K(1, 1) = att_p; _K(2, 2) = yaw_p; _K_rate_p(0, 0) = att_rate_p; _K_rate_p(1, 1) = att_rate_p; _K_rate_p(2, 2) = yaw_rate_p; _K_rate_d(0, 0) = att_rate_d; _K_rate_d(1, 1) = att_rate_d; _K_rate_d(2, 2) = yaw_rate_d; return OK; } void MulticopterAttitudeControl::vehicle_control_mode_poll() { bool control_mode_updated; /* Check HIL state if vehicle status has changed */ orb_check(_control_mode_sub, &control_mode_updated); if (control_mode_updated) { orb_copy(ORB_ID(vehicle_control_mode), _control_mode_sub, &_control_mode); } } void MulticopterAttitudeControl::vehicle_manual_poll() { bool manual_updated; /* get pilots inputs */ orb_check(_manual_sub, &manual_updated); if (manual_updated) { orb_copy(ORB_ID(manual_control_setpoint), _manual_sub, &_manual); } } void MulticopterAttitudeControl::vehicle_setpoint_poll() { /* check if there is a new setpoint */ bool att_sp_updated; orb_check(_att_sp_sub, &att_sp_updated); if (att_sp_updated) { orb_copy(ORB_ID(vehicle_attitude_setpoint), _att_sp_sub, &_att_sp); } } void MulticopterAttitudeControl::arming_status_poll() { /* check if there is a new setpoint */ bool arming_updated; orb_check(_arming_sub, &arming_updated); if (arming_updated) { orb_copy(ORB_ID(actuator_armed), _arming_sub, &_arming); } } void MulticopterAttitudeControl::task_main_trampoline(int argc, char *argv[]) { att_control::g_control->task_main(); } void MulticopterAttitudeControl::task_main() { /* inform about start */ warnx("started"); fflush(stdout); /* * do subscriptions */ _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _arming_sub = orb_subscribe(ORB_ID(actuator_armed)); /* rate limit attitude updates to 100Hz */ orb_set_interval(_att_sub, 10); parameters_update(); /* initialize values of critical structs until first regular update */ _arming.armed = false; /* get an initial update for all sensor and status data */ vehicle_setpoint_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); arming_status_poll(); /* setpoint rotation matrix */ math::Matrix<3, 3> R_sp; R_sp.identity(); /* rotation matrix for current state */ math::Matrix<3, 3> R; R.identity(); /* current angular rates */ math::Vector<3> rates; rates.zero(); /* identity matrix */ math::Matrix<3, 3> I; I.identity(); math::Quaternion q; bool reset_yaw_sp = true; /* wakeup source(s) */ struct pollfd fds[2]; /* Setup of loop */ fds[0].fd = _params_sub; fds[0].events = POLLIN; fds[1].fd = _att_sub; fds[1].events = POLLIN; while (!_task_should_exit) { /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* copy the topic to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); parameters_update(); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; float dt = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too large dt's */ if (dt > 0.02f) dt = 0.02f; /* copy attitude topic */ orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att); vehicle_setpoint_poll(); vehicle_control_mode_poll(); arming_status_poll(); vehicle_manual_poll(); float yaw_sp_move_rate = 0.0f; bool publish_att_sp = false; /* define which input is the dominating control input */ if (_control_mode.flag_control_manual_enabled) { /* manual input */ if (!_control_mode.flag_control_climb_rate_enabled) { /* pass throttle directly if not in altitude control mode */ _att_sp.thrust = _manual.throttle; } if (!_arming.armed) { /* reset yaw setpoint when disarmed */ reset_yaw_sp = true; } if (_control_mode.flag_control_attitude_enabled) { /* control attitude, update attitude setpoint depending on mode */ if (_att_sp.thrust < 0.1f) { // TODO //if (_status.condition_landed) { /* reset yaw setpoint if on ground */ // reset_yaw_sp = true; //} } else { if (_manual.yaw < -YAW_DEADZONE || YAW_DEADZONE < _manual.yaw) { /* move yaw setpoint */ yaw_sp_move_rate = _manual.yaw; _att_sp.yaw_body = _wrap_pi(_att_sp.yaw_body + yaw_sp_move_rate * dt); _att_sp.R_valid = false; publish_att_sp = true; } } /* reset yaw setpint to current position if needed */ if (reset_yaw_sp) { reset_yaw_sp = false; _att_sp.yaw_body = _att.yaw; _att_sp.R_valid = false; publish_att_sp = true; } if (!_control_mode.flag_control_velocity_enabled) { /* update attitude setpoint if not in position control mode */ _att_sp.roll_body = _manual.roll; _att_sp.pitch_body = _manual.pitch; _att_sp.R_valid = false; publish_att_sp = true; } } else { /* manual rate inputs (ACRO) */ // TODO /* reset yaw setpoint after ACRO */ reset_yaw_sp = true; } } else { if (!_control_mode.flag_control_auto_enabled) { /* no control, try to stay on place */ if (!_control_mode.flag_control_velocity_enabled) { /* no velocity control, reset attitude setpoint */ _att_sp.roll_body = 0.0f; _att_sp.pitch_body = 0.0f; publish_att_sp = true; } } /* reset yaw setpoint after non-manual control */ reset_yaw_sp = true; } if (_att_sp.R_valid) { /* rotation matrix in _att_sp is valid, use it */ R_sp.set(&_att_sp.R_body[0][0]); } else { /* rotation matrix in _att_sp is not valid, use euler angles instead */ R_sp.from_euler(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body); /* copy rotation matrix back to setpoint struct */ memcpy(&_att_sp.R_body[0][0], &R_sp.data[0][0], sizeof(_att_sp.R_body)); _att_sp.R_valid = true; } if (publish_att_sp) { /* publish the attitude setpoint */ _att_sp.timestamp = hrt_absolute_time(); if (_att_sp_pub > 0) { orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp); } else { _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp); } } /* rotation matrix for current state */ R.set(_att.R); /* current body angular rates */ rates(0) = _att.rollspeed; rates(1) = _att.pitchspeed; rates(2) = _att.yawspeed; /* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */ math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2)); math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2)); /* axis and sin(angle) of desired rotation */ math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z); /* calculate angle error */ float e_R_z_sin = e_R.length(); float e_R_z_cos = R_z * R_sp_z; /* calculate weight for yaw control */ float yaw_w = R_sp(2, 2) * R_sp(2, 2); /* calculate rotation matrix after roll/pitch only rotation */ math::Matrix<3, 3> R_rp; if (e_R_z_sin > 0.0f) { /* get axis-angle representation */ float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos); math::Vector<3> e_R_z_axis = e_R / e_R_z_sin; e_R = e_R_z_axis * e_R_z_angle; /* cross product matrix for e_R_axis */ math::Matrix<3, 3> e_R_cp; e_R_cp.zero(); e_R_cp(0, 1) = -e_R_z_axis(2); e_R_cp(0, 2) = e_R_z_axis(1); e_R_cp(1, 0) = e_R_z_axis(2); e_R_cp(1, 2) = -e_R_z_axis(0); e_R_cp(2, 0) = -e_R_z_axis(1); e_R_cp(2, 1) = e_R_z_axis(0); /* rotation matrix for roll/pitch only rotation */ R_rp = R * (I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos)); } else { /* zero roll/pitch rotation */ R_rp = R; } /* R_rp and R_sp has the same Z axis, calculate yaw error */ math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0)); math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0)); e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w; if (e_R_z_cos < 0.0f) { /* for large thrust vector rotations use another rotation method: * calculate angle and axis for R -> R_sp rotation directly */ q.from_dcm(R.transposed() * R_sp); math::Vector<3> e_R_d = q.imag(); e_R_d.normalize(); e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0)); /* use fusion of Z axis based rotation and direct rotation */ float direct_w = e_R_z_cos * e_R_z_cos * yaw_w; e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w; } /* angular rates setpoint*/ math::Vector<3> rates_sp = _K * e_R; /* feed forward yaw setpoint rate */ rates_sp(2) += yaw_sp_move_rate * yaw_w; math::Vector<3> control = _K_rate_p * (rates_sp - rates) + _K_rate_d * (_rates_prev - rates) / fmaxf(dt, 0.003f); _rates_prev = rates; /* publish the attitude rates setpoint */ _rates_sp.roll = rates_sp(0); _rates_sp.pitch = rates_sp(1); _rates_sp.yaw = rates_sp(2); _rates_sp.thrust = _att_sp.thrust; _rates_sp.timestamp = hrt_absolute_time(); if (_rates_sp_pub > 0) { orb_publish(ORB_ID(vehicle_rates_setpoint), _rates_sp_pub, &_rates_sp); } else { _rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_rates_sp); } /* publish the attitude controls */ _actuators.control[0] = (isfinite(control(0))) ? control(0) : 0.0f; _actuators.control[1] = (isfinite(control(1))) ? control(1) : 0.0f; _actuators.control[2] = (isfinite(control(2))) ? control(2) : 0.0f; _actuators.control[3] = (isfinite(_rates_sp.thrust)) ? _rates_sp.thrust : 0.0f; _actuators.timestamp = hrt_absolute_time(); if (_actuators_0_pub > 0) { /* publish the attitude setpoint */ orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators); } else { /* advertise and publish */ _actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators); } } perf_end(_loop_perf); } warnx("exit"); _control_task = -1; _exit(0); } int MulticopterAttitudeControl::start() { ASSERT(_control_task == -1); /* start the task */ _control_task = task_spawn_cmd("mc_att_control_vector", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&MulticopterAttitudeControl::task_main_trampoline, nullptr); if (_control_task < 0) { warn("task start failed"); return -errno; } return OK; } int mc_att_control_vector_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: mc_att_control_vector {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (att_control::g_control != nullptr) errx(1, "already running"); att_control::g_control = new MulticopterAttitudeControl; if (att_control::g_control == nullptr) errx(1, "alloc failed"); if (OK != att_control::g_control->start()) { delete att_control::g_control; att_control::g_control = nullptr; err(1, "start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (att_control::g_control == nullptr) errx(1, "not running"); delete att_control::g_control; att_control::g_control = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (att_control::g_control) { errx(0, "running"); } else { errx(1, "not running"); } } warnx("unrecognized command"); return 1; }