/**************************************************************************** * * Copyright (C) 2013 Anton Babushkin. All rights reserved. * Author: Anton Babushkin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file position_estimator_inav_main.c * Model-identification based position estimator for multirotors */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "position_estimator_inav_params.h" #include "inertial_filter.h" #define MIN_VALID_W 0.00001f static bool thread_should_exit = false; /**< Deamon exit flag */ static bool thread_running = false; /**< Deamon status flag */ static int position_estimator_inav_task; /**< Handle of deamon task / thread */ static bool verbose_mode = false; static const hrt_abstime gps_topic_timeout = 1000000; // GPS topic timeout = 1s static const hrt_abstime flow_topic_timeout = 1000000; // optical flow topic timeout = 1s static const hrt_abstime sonar_timeout = 150000; // sonar timeout = 150ms static const hrt_abstime sonar_valid_timeout = 1000000; // estimate sonar distance during this time after sonar loss static const hrt_abstime xy_src_timeout = 2000000; // estimate position during this time after position sources loss static const uint32_t updates_counter_len = 1000000; static const uint32_t pub_interval = 10000; // limit publish rate to 100 Hz static const float max_flow = 1.0f; // max flow value that can be used, rad/s __EXPORT int position_estimator_inav_main(int argc, char *argv[]); int position_estimator_inav_thread_main(int argc, char *argv[]); static void usage(const char *reason); /** * Print the correct usage. */ static void usage(const char *reason) { if (reason) fprintf(stderr, "%s\n", reason); fprintf(stderr, "usage: position_estimator_inav {start|stop|status} [-v]\n\n"); exit(1); } /** * The position_estimator_inav_thread only briefly exists to start * the background job. The stack size assigned in the * Makefile does only apply to this management task. * * The actual stack size should be set in the call * to task_create(). */ int position_estimator_inav_main(int argc, char *argv[]) { if (argc < 1) usage("missing command"); if (!strcmp(argv[1], "start")) { if (thread_running) { warnx("already running"); /* this is not an error */ exit(0); } verbose_mode = false; if (argc > 1) if (!strcmp(argv[2], "-v")) verbose_mode = true; thread_should_exit = false; position_estimator_inav_task = task_spawn_cmd("position_estimator_inav", SCHED_RR, SCHED_PRIORITY_MAX - 5, 4096, position_estimator_inav_thread_main, (argv) ? (const char **) &argv[2] : (const char **) NULL); exit(0); } if (!strcmp(argv[1], "stop")) { if (thread_running) { warnx("stop"); thread_should_exit = true; } else { warnx("app not started"); } exit(0); } if (!strcmp(argv[1], "status")) { if (thread_running) { warnx("app is running"); } else { warnx("app not started"); } exit(0); } usage("unrecognized command"); exit(1); } /**************************************************************************** * main ****************************************************************************/ int position_estimator_inav_thread_main(int argc, char *argv[]) { warnx("started"); int mavlink_fd; mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); mavlink_log_info(mavlink_fd, "[inav] started"); float x_est[3] = { 0.0f, 0.0f, 0.0f }; float y_est[3] = { 0.0f, 0.0f, 0.0f }; float z_est[3] = { 0.0f, 0.0f, 0.0f }; int baro_init_cnt = 0; int baro_init_num = 200; float baro_offset = 0.0f; // baro offset for reference altitude, initialized on start, then adjusted float surface_offset = 0.0f; // ground level offset from reference altitude float surface_offset_rate = 0.0f; // surface offset change rate float alt_avg = 0.0f; bool landed = true; hrt_abstime landed_time = 0; bool flag_armed = false; uint32_t accel_counter = 0; uint32_t baro_counter = 0; bool ref_inited = false; hrt_abstime ref_init_start = 0; const hrt_abstime ref_init_delay = 1000000; // wait for 1s after 3D fix uint16_t accel_updates = 0; uint16_t baro_updates = 0; uint16_t gps_updates = 0; uint16_t attitude_updates = 0; uint16_t flow_updates = 0; hrt_abstime updates_counter_start = hrt_absolute_time(); hrt_abstime pub_last = hrt_absolute_time(); hrt_abstime t_prev = 0; /* acceleration in NED frame */ float accel_NED[3] = { 0.0f, 0.0f, -CONSTANTS_ONE_G }; /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */ float corr_acc[] = { 0.0f, 0.0f, 0.0f }; // N E D float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame float corr_baro = 0.0f; // D float corr_gps[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float w_gps_xy = 1.0f; float w_gps_z = 1.0f; float corr_sonar = 0.0f; float corr_sonar_filtered = 0.0f; float corr_flow[] = { 0.0f, 0.0f }; // N E float w_flow = 0.0f; float sonar_prev = 0.0f; hrt_abstime sonar_time = 0; // time of last sonar measurement (not filtered) hrt_abstime sonar_valid_time = 0; // time of last sonar measurement used for correction (filtered) hrt_abstime xy_src_time = 0; // time of last available position data bool gps_valid = false; // GPS is valid bool sonar_valid = false; // sonar is valid bool flow_valid = false; // flow is valid bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false) /* declare and safely initialize all structs */ struct actuator_controls_s actuator; memset(&actuator, 0, sizeof(actuator)); struct actuator_armed_s armed; memset(&armed, 0, sizeof(armed)); struct sensor_combined_s sensor; memset(&sensor, 0, sizeof(sensor)); struct vehicle_gps_position_s gps; memset(&gps, 0, sizeof(gps)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_local_position_s local_pos; memset(&local_pos, 0, sizeof(local_pos)); struct optical_flow_s flow; memset(&flow, 0, sizeof(flow)); struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); /* subscribe */ int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update)); int actuator_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS); int armed_sub = orb_subscribe(ORB_ID(actuator_armed)); int sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined)); int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow)); int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); /* advertise */ orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos); orb_advert_t vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos); struct position_estimator_inav_params params; struct position_estimator_inav_param_handles pos_inav_param_handles; /* initialize parameter handles */ parameters_init(&pos_inav_param_handles); /* first parameters read at start up */ struct parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, ¶m_update); /* read from param topic to clear updated flag */ /* first parameters update */ parameters_update(&pos_inav_param_handles, ¶ms); struct pollfd fds_init[1] = { { .fd = sensor_combined_sub, .events = POLLIN }, }; /* wait for initial baro value */ bool wait_baro = true; thread_running = true; while (wait_baro && !thread_should_exit) { int ret = poll(fds_init, 1, 1000); if (ret < 0) { /* poll error */ mavlink_log_info(mavlink_fd, "[inav] poll error on init"); } else if (ret > 0) { if (fds_init[0].revents & POLLIN) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (wait_baro && sensor.baro_counter != baro_counter) { baro_counter = sensor.baro_counter; /* mean calculation over several measurements */ if (baro_init_cnt < baro_init_num) { baro_offset += sensor.baro_alt_meter; baro_init_cnt++; } else { wait_baro = false; baro_offset /= (float) baro_init_cnt; warnx("baro offs: %.2f", baro_offset); mavlink_log_info(mavlink_fd, "[inav] baro offs: %.2f", baro_offset); local_pos.z_valid = true; local_pos.v_z_valid = true; } } } } } /* main loop */ struct pollfd fds[1] = { { .fd = vehicle_attitude_sub, .events = POLLIN }, }; while (!thread_should_exit) { int ret = poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate hrt_abstime t = hrt_absolute_time(); if (ret < 0) { /* poll error */ mavlink_log_info(mavlink_fd, "[inav] poll error on init"); continue; } else if (ret > 0) { /* act on attitude updates */ /* vehicle attitude */ orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att); attitude_updates++; bool updated; /* parameter update */ orb_check(parameter_update_sub, &updated); if (updated) { struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update); parameters_update(&pos_inav_param_handles, ¶ms); } /* actuator */ orb_check(actuator_sub, &updated); if (updated) { orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator); } /* armed */ orb_check(armed_sub, &updated); if (updated) { orb_copy(ORB_ID(actuator_armed), armed_sub, &armed); /* reset ground level on arm */ if (armed.armed && !flag_armed) { flag_armed = armed.armed; baro_offset -= z_est[0]; corr_baro = 0.0f; local_pos.ref_alt -= z_est[0]; local_pos.ref_timestamp = t; z_est[0] = 0.0f; alt_avg = 0.0f; } } /* sensor combined */ orb_check(sensor_combined_sub, &updated); if (updated) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (sensor.accelerometer_counter != accel_counter) { if (att.R_valid) { /* correct accel bias */ sensor.accelerometer_m_s2[0] -= acc_bias[0]; sensor.accelerometer_m_s2[1] -= acc_bias[1]; sensor.accelerometer_m_s2[2] -= acc_bias[2]; /* transform acceleration vector from body frame to NED frame */ for (int i = 0; i < 3; i++) { accel_NED[i] = 0.0f; for (int j = 0; j < 3; j++) { accel_NED[i] += att.R[i][j] * sensor.accelerometer_m_s2[j]; } } corr_acc[0] = accel_NED[0] - x_est[2]; corr_acc[1] = accel_NED[1] - y_est[2]; corr_acc[2] = accel_NED[2] + CONSTANTS_ONE_G - z_est[2]; } else { memset(corr_acc, 0, sizeof(corr_acc)); } accel_counter = sensor.accelerometer_counter; accel_updates++; } if (sensor.baro_counter != baro_counter) { corr_baro = baro_offset - sensor.baro_alt_meter - z_est[0]; baro_counter = sensor.baro_counter; baro_updates++; } } /* optical flow */ orb_check(optical_flow_sub, &updated); if (updated) { orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow); if (flow.ground_distance_m > 0.31f && flow.ground_distance_m < 4.0f && att.R[2][2] > 0.7 && flow.ground_distance_m != sonar_prev) { sonar_time = t; sonar_prev = flow.ground_distance_m; corr_sonar = flow.ground_distance_m + surface_offset + z_est[0]; corr_sonar_filtered += (corr_sonar - corr_sonar_filtered) * params.sonar_filt; if (fabsf(corr_sonar) > params.sonar_err) { /* correction is too large: spike or new ground level? */ if (fabsf(corr_sonar - corr_sonar_filtered) > params.sonar_err) { /* spike detected, ignore */ corr_sonar = 0.0f; sonar_valid = false; } else { /* new ground level */ surface_offset -= corr_sonar; surface_offset_rate = 0.0f; corr_sonar = 0.0f; corr_sonar_filtered = 0.0f; sonar_valid_time = t; sonar_valid = true; local_pos.surface_bottom_timestamp = t; mavlink_log_info(mavlink_fd, "[inav] new surface level: %.2f", surface_offset); } } else { /* correction is ok, use it */ sonar_valid_time = t; sonar_valid = true; } } float flow_q = flow.quality / 255.0f; float dist_bottom = - z_est[0] - surface_offset; if (dist_bottom > 0.3f && flow_q > params.flow_q_min && (t < sonar_valid_time + sonar_valid_timeout) && att.R[2][2] > 0.7) { /* distance to surface */ float flow_dist = dist_bottom / att.R[2][2]; /* check if flow if too large for accurate measurements */ /* calculate estimated velocity in body frame */ float body_v_est[2] = { 0.0f, 0.0f }; for (int i = 0; i < 2; i++) { body_v_est[i] = att.R[0][i] * x_est[1] + att.R[1][i] * y_est[1] + att.R[2][i] * z_est[1]; } /* set this flag if flow should be accurate according to current velocity and attitude rate estimate */ flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow && fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow; /* convert raw flow to angular flow */ float flow_ang[2]; flow_ang[0] = flow.flow_raw_x * params.flow_k; flow_ang[1] = flow.flow_raw_y * params.flow_k; /* flow measurements vector */ float flow_m[3]; flow_m[0] = -flow_ang[0] * flow_dist; flow_m[1] = -flow_ang[1] * flow_dist; flow_m[2] = z_est[1]; /* velocity in NED */ float flow_v[2] = { 0.0f, 0.0f }; /* project measurements vector to NED basis, skip Z component */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { flow_v[i] += att.R[i][j] * flow_m[j]; } } /* velocity correction */ corr_flow[0] = flow_v[0] - x_est[1]; corr_flow[1] = flow_v[1] - y_est[1]; /* adjust correction weight */ float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min); w_flow = att.R[2][2] * flow_q_weight / fmaxf(1.0f, flow_dist); /* if flow is not accurate, reduce weight for it */ // TODO make this more fuzzy if (!flow_accurate) w_flow *= 0.05f; flow_valid = true; } else { w_flow = 0.0f; flow_valid = false; } flow_updates++; } /* vehicle GPS position */ orb_check(vehicle_gps_position_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps); if (gps.fix_type >= 3) { /* hysteresis for GPS quality */ if (gps_valid) { if (gps.eph_m > 10.0f || gps.epv_m > 10.0f) { gps_valid = false; mavlink_log_info(mavlink_fd, "[inav] GPS signal lost"); } } else { if (gps.eph_m < 5.0f && gps.epv_m < 5.0f) { gps_valid = true; mavlink_log_info(mavlink_fd, "[inav] GPS signal found"); } } } else { gps_valid = false; } if (gps_valid) { /* initialize reference position if needed */ if (!ref_inited) { if (ref_init_start == 0) { ref_init_start = t; } else if (t > ref_init_start + ref_init_delay) { ref_inited = true; /* reference GPS position */ double lat = gps.lat * 1e-7; double lon = gps.lon * 1e-7; float alt = gps.alt * 1e-3; local_pos.ref_lat = gps.lat; local_pos.ref_lon = gps.lon; local_pos.ref_alt = alt + z_est[0]; local_pos.ref_timestamp = t; /* initialize projection */ map_projection_init(lat, lon); warnx("init ref: lat=%.7f, lon=%.7f, alt=%.2f", lat, lon, alt); mavlink_log_info(mavlink_fd, "[inav] init ref: lat=%.7f, lon=%.7f, alt=%.2f", lat, lon, alt); } } if (ref_inited) { /* project GPS lat lon to plane */ float gps_proj[2]; map_projection_project(gps.lat * 1e-7, gps.lon * 1e-7, &(gps_proj[0]), &(gps_proj[1])); /* calculate correction for position */ corr_gps[0][0] = gps_proj[0] - x_est[0]; corr_gps[1][0] = gps_proj[1] - y_est[0]; corr_gps[2][0] = local_pos.ref_alt - gps.alt * 1e-3 - z_est[0]; /* calculate correction for velocity */ if (gps.vel_ned_valid) { corr_gps[0][1] = gps.vel_n_m_s - x_est[1]; corr_gps[1][1] = gps.vel_e_m_s - y_est[1]; corr_gps[2][1] = gps.vel_d_m_s - z_est[1]; } else { corr_gps[0][1] = 0.0f; corr_gps[1][1] = 0.0f; corr_gps[2][1] = 0.0f; } w_gps_xy = 1.0f / fmaxf(1.0f, gps.eph_m); w_gps_z = 1.0f / fmaxf(1.0f, gps.epv_m); } } else { /* no GPS lock */ memset(corr_gps, 0, sizeof(corr_gps)); ref_init_start = 0; } gps_updates++; } } /* check for timeout on FLOW topic */ if ((flow_valid || sonar_valid) && t > flow.timestamp + flow_topic_timeout) { flow_valid = false; sonar_valid = false; warnx("FLOW timeout"); mavlink_log_info(mavlink_fd, "[inav] FLOW timeout"); } /* check for timeout on GPS topic */ if (gps_valid && t > gps.timestamp_position + gps_topic_timeout) { gps_valid = false; warnx("GPS timeout"); mavlink_log_info(mavlink_fd, "[inav] GPS timeout"); } /* check for sonar measurement timeout */ if (sonar_valid && t > sonar_time + sonar_timeout) { corr_sonar = 0.0f; sonar_valid = false; } float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f; t_prev = t; /* use GPS if it's valid and reference position initialized */ bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W; bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W; /* use flow if it's valid and (accurate or no GPS available) */ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy); /* try to estimate position during some time after position sources lost */ if (use_gps_xy || use_flow) { xy_src_time = t; } bool can_estimate_xy = (t < xy_src_time + xy_src_timeout); bool dist_bottom_valid = (t < sonar_valid_time + sonar_valid_timeout); if (dist_bottom_valid) { /* surface distance prediction */ surface_offset += surface_offset_rate * dt; /* surface distance correction */ if (sonar_valid) { surface_offset_rate -= corr_sonar * 0.5f * params.w_z_sonar * params.w_z_sonar * dt; surface_offset -= corr_sonar * params.w_z_sonar * dt; } } float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy; float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy; float w_z_gps_p = params.w_z_gps_p * w_gps_z; /* reduce GPS weight if optical flow is good */ if (use_flow && flow_accurate) { w_xy_gps_p *= params.w_gps_flow; w_xy_gps_v *= params.w_gps_flow; } /* baro offset correction */ if (use_gps_z) { float offs_corr = corr_gps[2][0] * w_z_gps_p * dt; baro_offset += offs_corr; baro_counter += offs_corr; } /* accelerometer bias correction */ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f }; if (use_gps_xy) { accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v; accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v; } if (use_gps_z) { accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p; } if (use_flow) { accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow; accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow; } accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro; /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += att.R[j][i] * accel_bias_corr[j]; } acc_bias[i] += c * params.w_acc_bias * dt; } /* inertial filter prediction for altitude */ inertial_filter_predict(dt, z_est); /* inertial filter correction for altitude */ inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro); inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p); inertial_filter_correct(corr_acc[2], dt, z_est, 2, params.w_z_acc); if (can_estimate_xy) { /* inertial filter prediction for position */ inertial_filter_predict(dt, x_est); inertial_filter_predict(dt, y_est); if (!isfinite(x_est[0]) || !isfinite(y_est[0])) { warnx("BAD ESTIMATE AFTER PREDICTION %.6f x: %.3f %.3f %.3f y: %.3f %.3f %.3f", dt, x_est[0], x_est[1], x_est[2], y_est[0], y_est[1], y_est[2]); thread_should_exit = true; } /* inertial filter correction for position */ inertial_filter_correct(corr_acc[0], dt, x_est, 2, params.w_xy_acc); inertial_filter_correct(corr_acc[1], dt, y_est, 2, params.w_xy_acc); if (use_flow) { inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow); inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow); } if (use_gps_xy) { inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_v); if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) { inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v); inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v); } } if (!isfinite(x_est[0]) || !isfinite(y_est[0])) { warnx("BAD ESTIMATE AFTER CORRECTION dt: %.6f x: %.3f %.3f %.3f y: %.3f %.3f %.3f", dt, x_est[0], x_est[1], x_est[2], y_est[0], y_est[1], y_est[2]); warnx("BAD ESTIMATE AFTER CORRECTION acc: %.3f %.3f gps x: %.3f %.3f gps y: %.3f %.3f", corr_acc[0], corr_acc[1], corr_gps[0][0], corr_gps[0][1], corr_gps[1][0], corr_gps[1][1]); thread_should_exit = true; } } /* detect land */ alt_avg += (- z_est[0] - alt_avg) * dt / params.land_t; float alt_disp2 = - z_est[0] - alt_avg; alt_disp2 = alt_disp2 * alt_disp2; float land_disp2 = params.land_disp * params.land_disp; /* get actual thrust output */ float thrust = armed.armed ? actuator.control[3] : 0.0f; if (landed) { if (alt_disp2 > land_disp2 && thrust > params.land_thr) { landed = false; landed_time = 0; } } else { if (alt_disp2 < land_disp2 && thrust < params.land_thr) { if (landed_time == 0) { landed_time = t; // land detected first time } else { if (t > landed_time + params.land_t * 1000000.0f) { landed = true; landed_time = 0; } } } else { landed_time = 0; } } if (verbose_mode) { /* print updates rate */ if (t > updates_counter_start + updates_counter_len) { float updates_dt = (t - updates_counter_start) * 0.000001f; warnx( "updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s", accel_updates / updates_dt, baro_updates / updates_dt, gps_updates / updates_dt, attitude_updates / updates_dt, flow_updates / updates_dt); updates_counter_start = t; accel_updates = 0; baro_updates = 0; gps_updates = 0; attitude_updates = 0; flow_updates = 0; } } if (t > pub_last + pub_interval) { pub_last = t; /* publish local position */ local_pos.xy_valid = can_estimate_xy && use_gps_xy; local_pos.v_xy_valid = can_estimate_xy; local_pos.xy_global = local_pos.xy_valid && use_gps_xy; local_pos.z_global = local_pos.z_valid && use_gps_z; local_pos.x = x_est[0]; local_pos.vx = x_est[1]; local_pos.y = y_est[0]; local_pos.vy = y_est[1]; local_pos.z = z_est[0]; local_pos.vz = z_est[1]; local_pos.landed = landed; local_pos.yaw = att.yaw; local_pos.dist_bottom_valid = dist_bottom_valid; if (local_pos.dist_bottom_valid) { local_pos.dist_bottom = -z_est[0] - surface_offset; local_pos.dist_bottom_rate = -z_est[1] - surface_offset_rate; } local_pos.timestamp = t; orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos); /* publish global position */ global_pos.valid = local_pos.xy_global; if (local_pos.xy_global) { double est_lat, est_lon; map_projection_reproject(local_pos.x, local_pos.y, &est_lat, &est_lon); global_pos.lat = (int32_t)(est_lat * 1e7d); global_pos.lon = (int32_t)(est_lon * 1e7d); global_pos.time_gps_usec = gps.time_gps_usec; } /* set valid values even if position is not valid */ if (local_pos.v_xy_valid) { global_pos.vx = local_pos.vx; global_pos.vy = local_pos.vy; } if (local_pos.z_valid) { global_pos.relative_alt = -local_pos.z; } if (local_pos.z_global) { global_pos.alt = local_pos.ref_alt - local_pos.z; } if (local_pos.v_z_valid) { global_pos.vz = local_pos.vz; } global_pos.yaw = local_pos.yaw; global_pos.timestamp = t; orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos); } } warnx("stopped"); mavlink_log_info(mavlink_fd, "[inav] stopped"); thread_running = false; return 0; }