/**************************************************************************** * * Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file px4io.c * Top-level logic for the PX4IO module. */ #include #include #include // required for task_create #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG #include "px4io.h" __EXPORT int user_start(int argc, char *argv[]); extern void up_cxxinitialize(void); struct sys_state_s system_state; static struct hrt_call serial_dma_call; pwm_limit_t pwm_limit; /* * a set of debug buffers to allow us to send debug information from ISRs */ static volatile uint32_t msg_counter; static volatile uint32_t last_msg_counter; static volatile uint8_t msg_next_out, msg_next_in; /* * WARNING: too large buffers here consume the memory required * for mixer handling. Do not allocate more than 80 bytes for * output. */ #define NUM_MSG 2 static char msg[NUM_MSG][40]; /* * add a debug message to be printed on the console */ void isr_debug(uint8_t level, const char *fmt, ...) { if (level > r_page_setup[PX4IO_P_SETUP_SET_DEBUG]) { return; } va_list ap; va_start(ap, fmt); vsnprintf(msg[msg_next_in], sizeof(msg[0]), fmt, ap); va_end(ap); msg_next_in = (msg_next_in+1) % NUM_MSG; msg_counter++; } /* * show all pending debug messages */ static void show_debug_messages(void) { if (msg_counter != last_msg_counter) { uint32_t n = msg_counter - last_msg_counter; if (n > NUM_MSG) n = NUM_MSG; last_msg_counter = msg_counter; while (n--) { debug("%s", msg[msg_next_out]); msg_next_out = (msg_next_out+1) % NUM_MSG; } } } static void heartbeat_blink(void) { static bool heartbeat = false; LED_BLUE(heartbeat = !heartbeat); #ifdef GPIO_LED4 LED_RING(heartbeat); #endif } static uint64_t reboot_time; /** schedule a reboot in time_delta_usec microseconds */ void schedule_reboot(uint32_t time_delta_usec) { reboot_time = hrt_absolute_time() + time_delta_usec; } /** check for a scheduled reboot */ static void check_reboot(void) { if (reboot_time != 0 && hrt_absolute_time() > reboot_time) { up_systemreset(); } } static void calculate_fw_crc(void) { #define APP_SIZE_MAX 0xf000 #define APP_LOAD_ADDRESS 0x08001000 // compute CRC of the current firmware uint32_t sum = 0; for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) { uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS); sum = crc32part((uint8_t *)&bytes, sizeof(bytes), sum); } r_page_setup[PX4IO_P_SETUP_CRC] = sum & 0xFFFF; r_page_setup[PX4IO_P_SETUP_CRC+1] = sum >> 16; } int user_start(int argc, char *argv[]) { /* run C++ ctors before we go any further */ up_cxxinitialize(); /* reset all to zero */ memset(&system_state, 0, sizeof(system_state)); /* configure the high-resolution time/callout interface */ hrt_init(); /* calculate our fw CRC so FMU can decide if we need to update */ calculate_fw_crc(); /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ #ifdef CONFIG_ARCH_DMA hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL); #endif /* print some startup info */ lowsyslog("\nPX4IO: starting\n"); /* default all the LEDs to off while we start */ LED_AMBER(false); LED_BLUE(false); LED_SAFETY(false); #ifdef GPIO_LED4 LED_RING(false); #endif /* turn on servo power (if supported) */ #ifdef POWER_SERVO POWER_SERVO(true); #endif /* turn off S.Bus out (if supported) */ #ifdef ENABLE_SBUS_OUT ENABLE_SBUS_OUT(false); #endif /* start the safety switch handler */ safety_init(); /* configure the first 8 PWM outputs (i.e. all of them) */ up_pwm_servo_init(0xff); /* initialise the control inputs */ controls_init(); /* set up the ADC */ adc_init(); /* start the FMU interface */ interface_init(); /* add a performance counter for mixing */ perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix"); /* add a performance counter for controls */ perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls"); /* and one for measuring the loop rate */ perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop"); struct mallinfo minfo = mallinfo(); lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks); /* initialize PWM limit lib */ pwm_limit_init(&pwm_limit); /* * P O L I C E L I G H T S * * Not enough memory, lock down. * * We might need to allocate mixers later, and this will * ensure that a developer doing a change will notice * that he just burned the remaining RAM with static * allocations. We don't want him to be able to * get past that point. This needs to be clearly * documented in the dev guide. * */ if (minfo.mxordblk < 600) { lowsyslog("ERR: not enough MEM"); bool phase = false; while (true) { if (phase) { LED_AMBER(true); LED_BLUE(false); } else { LED_AMBER(false); LED_BLUE(true); } up_udelay(250000); phase = !phase; } } /* Start the failsafe led init */ failsafe_led_init(); /* * Run everything in a tight loop. */ uint64_t last_debug_time = 0; uint64_t last_heartbeat_time = 0; for (;;) { /* track the rate at which the loop is running */ perf_count(loop_perf); /* kick the mixer */ perf_begin(mixer_perf); mixer_tick(); perf_end(mixer_perf); /* kick the control inputs */ perf_begin(controls_perf); controls_tick(); perf_end(controls_perf); if ((hrt_absolute_time() - last_heartbeat_time) > 250*1000) { last_heartbeat_time = hrt_absolute_time(); heartbeat_blink(); } check_reboot(); /* check for debug activity (default: none) */ show_debug_messages(); /* post debug state at ~1Hz - this is via an auxiliary serial port * DEFAULTS TO OFF! */ if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) { isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG], (unsigned)r_status_flags, (unsigned)r_setup_arming, (unsigned)r_setup_features, (unsigned)mallinfo().mxordblk); last_debug_time = hrt_absolute_time(); } } }