/**************************************************************************** * * Copyright (C) 2012 PX4 Development Team. All rights reserved. * Author: Lorenz Meier * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file sensors.cpp * Sensor readout process. * * @author Lorenz Meier */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ #define ACC_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ #define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100 /* 1000 ms downtime at 100 Hz update rate */ #define BARO_HEALTH_COUNTER_LIMIT_ERROR 50 /* 500 ms downtime at 100 Hz update rate */ #define ADC_HEALTH_COUNTER_LIMIT_ERROR 10 /* 100 ms downtime at 100 Hz update rate */ #define GYRO_HEALTH_COUNTER_LIMIT_OK 5 #define ACC_HEALTH_COUNTER_LIMIT_OK 5 #define MAGN_HEALTH_COUNTER_LIMIT_OK 5 #define BARO_HEALTH_COUNTER_LIMIT_OK 5 #define ADC_HEALTH_COUNTER_LIMIT_OK 5 /** * Analog layout: * FMU: * IN2 - battery voltage * IN3 - battery current * IN4 - 5V sense * IN10 - spare (we could actually trim these from the set) * IN11 - spare (we could actually trim these from the set) * IN12 - spare (we could actually trim these from the set) * IN13 - aux1 * IN14 - aux2 * IN15 - pressure sensor * * IO: * IN4 - servo supply rail * IN5 - analog RSSI */ #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 #define ADC_BATTERY_VOLTAGE_CHANNEL 10 #define ADC_AIRSPEED_VOLTAGE_CHANNEL 11 #endif #ifdef CONFIG_ARCH_BOARD_PX4FMU_V2 #define ADC_BATTERY_VOLTAGE_CHANNEL 2 #define ADC_BATTERY_CURRENT_CHANNEL 3 #define ADC_5V_RAIL_SENSE 4 #define ADC_AIRSPEED_VOLTAGE_CHANNEL 15 #endif #define BAT_VOL_INITIAL 0.f #define BAT_VOL_LOWPASS_1 0.99f #define BAT_VOL_LOWPASS_2 0.01f #define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f /** * HACK - true temperature is much less than indicated temperature in baro, * subtract 5 degrees in an attempt to account for the electrical upheating of the PCB */ #define PCB_TEMP_ESTIMATE_DEG 5.0f #define limit_minus_one_to_one(arg) (arg < -1.0f) ? -1.0f : ((arg > 1.0f) ? 1.0f : arg) /** * Sensor app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int sensors_main(int argc, char *argv[]); class Sensors { public: /** * Constructor */ Sensors(); /** * Destructor, also kills the sensors task. */ ~Sensors(); /** * Start the sensors task. * * @return OK on success. */ int start(); private: static const unsigned _rc_max_chan_count = RC_CHANNELS_MAX; /**< maximum number of r/c channels we handle */ hrt_abstime _rc_last_valid; /**< last time we got a valid RC signal */ /** * Gather and publish RC input data. */ void rc_poll(); /* XXX should not be here - should be own driver */ int _fd_adc; /**< ADC driver handle */ hrt_abstime _last_adc; /**< last time we took input from the ADC */ bool _task_should_exit; /**< if true, sensor task should exit */ int _sensors_task; /**< task handle for sensor task */ bool _hil_enabled; /**< if true, HIL is active */ bool _publishing; /**< if true, we are publishing sensor data */ int _gyro_sub; /**< raw gyro data subscription */ int _accel_sub; /**< raw accel data subscription */ int _mag_sub; /**< raw mag data subscription */ int _rc_sub; /**< raw rc channels data subscription */ int _baro_sub; /**< raw baro data subscription */ int _airspeed_sub; /**< airspeed subscription */ int _diff_pres_sub; /**< raw differential pressure subscription */ int _vcontrol_mode_sub; /**< vehicle control mode subscription */ int _params_sub; /**< notification of parameter updates */ int _manual_control_sub; /**< notification of manual control updates */ orb_advert_t _sensor_pub; /**< combined sensor data topic */ orb_advert_t _manual_control_pub; /**< manual control signal topic */ orb_advert_t _actuator_group_3_pub; /**< manual control as actuator topic */ orb_advert_t _rc_pub; /**< raw r/c control topic */ orb_advert_t _battery_pub; /**< battery status */ orb_advert_t _airspeed_pub; /**< airspeed */ orb_advert_t _diff_pres_pub; /**< differential_pressure */ perf_counter_t _loop_perf; /**< loop performance counter */ struct rc_channels_s _rc; /**< r/c channel data */ struct battery_status_s _battery_status; /**< battery status */ struct baro_report _barometer; /**< barometer data */ struct differential_pressure_s _diff_pres; struct airspeed_s _airspeed; math::Matrix _board_rotation; /**< rotation matrix for the orientation that the board is mounted */ math::Matrix _external_mag_rotation; /**< rotation matrix for the orientation that an external mag is mounted */ bool _mag_is_external; /**< true if the active mag is on an external board */ struct { float min[_rc_max_chan_count]; float trim[_rc_max_chan_count]; float max[_rc_max_chan_count]; float rev[_rc_max_chan_count]; float dz[_rc_max_chan_count]; float scaling_factor[_rc_max_chan_count]; float gyro_offset[3]; float gyro_scale[3]; float mag_offset[3]; float mag_scale[3]; float accel_offset[3]; float accel_scale[3]; float diff_pres_offset_pa; float diff_pres_analog_enabled; int board_rotation; int external_mag_rotation; int rc_map_roll; int rc_map_pitch; int rc_map_yaw; int rc_map_throttle; int rc_map_mode_sw; int rc_map_return_sw; int rc_map_assisted_sw; int rc_map_mission_sw; // int rc_map_offboard_ctrl_mode_sw; int rc_map_flaps; int rc_map_aux1; int rc_map_aux2; int rc_map_aux3; int rc_map_aux4; int rc_map_aux5; float rc_scale_roll; float rc_scale_pitch; float rc_scale_yaw; float rc_scale_flaps; float battery_voltage_scaling; float battery_current_scaling; } _parameters; /**< local copies of interesting parameters */ struct { param_t min[_rc_max_chan_count]; param_t trim[_rc_max_chan_count]; param_t max[_rc_max_chan_count]; param_t rev[_rc_max_chan_count]; param_t dz[_rc_max_chan_count]; param_t gyro_offset[3]; param_t gyro_scale[3]; param_t accel_offset[3]; param_t accel_scale[3]; param_t mag_offset[3]; param_t mag_scale[3]; param_t diff_pres_offset_pa; param_t diff_pres_analog_enabled; param_t rc_map_roll; param_t rc_map_pitch; param_t rc_map_yaw; param_t rc_map_throttle; param_t rc_map_mode_sw; param_t rc_map_return_sw; param_t rc_map_assisted_sw; param_t rc_map_mission_sw; // param_t rc_map_offboard_ctrl_mode_sw; param_t rc_map_flaps; param_t rc_map_aux1; param_t rc_map_aux2; param_t rc_map_aux3; param_t rc_map_aux4; param_t rc_map_aux5; param_t rc_scale_roll; param_t rc_scale_pitch; param_t rc_scale_yaw; param_t rc_scale_flaps; param_t battery_voltage_scaling; param_t battery_current_scaling; param_t board_rotation; param_t external_mag_rotation; } _parameter_handles; /**< handles for interesting parameters */ /** * Update our local parameter cache. */ int parameters_update(); /** * Do accel-related initialisation. */ void accel_init(); /** * Do gyro-related initialisation. */ void gyro_init(); /** * Do mag-related initialisation. */ void mag_init(); /** * Do baro-related initialisation. */ void baro_init(); /** * Do adc-related initialisation. */ void adc_init(); /** * Poll the accelerometer for updated data. * * @param raw Combined sensor data structure into which * data should be returned. */ void accel_poll(struct sensor_combined_s &raw); /** * Poll the gyro for updated data. * * @param raw Combined sensor data structure into which * data should be returned. */ void gyro_poll(struct sensor_combined_s &raw); /** * Poll the magnetometer for updated data. * * @param raw Combined sensor data structure into which * data should be returned. */ void mag_poll(struct sensor_combined_s &raw); /** * Poll the barometer for updated data. * * @param raw Combined sensor data structure into which * data should be returned. */ void baro_poll(struct sensor_combined_s &raw); /** * Poll the differential pressure sensor for updated data. * * @param raw Combined sensor data structure into which * data should be returned. */ void diff_pres_poll(struct sensor_combined_s &raw); /** * Check for changes in vehicle control mode. */ void vehicle_control_mode_poll(); /** * Check for changes in parameters. */ void parameter_update_poll(bool forced = false); /** * Poll the ADC and update readings to suit. * * @param raw Combined sensor data structure into which * data should be returned. */ void adc_poll(struct sensor_combined_s &raw); /** * Shim for calling task_main from task_create. */ static void task_main_trampoline(int argc, char *argv[]); /** * Main sensor collection task. */ void task_main() __attribute__((noreturn)); }; namespace sensors { /* oddly, ERROR is not defined for c++ */ #ifdef ERROR # undef ERROR #endif static const int ERROR = -1; Sensors *g_sensors = nullptr; } Sensors::Sensors() : _rc_last_valid(0), _fd_adc(-1), _last_adc(0), _task_should_exit(false), _sensors_task(-1), _hil_enabled(false), _publishing(true), /* subscriptions */ _gyro_sub(-1), _accel_sub(-1), _mag_sub(-1), _rc_sub(-1), _baro_sub(-1), _vcontrol_mode_sub(-1), _params_sub(-1), _manual_control_sub(-1), /* publications */ _sensor_pub(-1), _manual_control_pub(-1), _actuator_group_3_pub(-1), _rc_pub(-1), _battery_pub(-1), _airspeed_pub(-1), _diff_pres_pub(-1), /* performance counters */ _loop_perf(perf_alloc(PC_ELAPSED, "sensor task update")), _board_rotation(3, 3), _external_mag_rotation(3, 3), _mag_is_external(false) { /* basic r/c parameters */ for (unsigned i = 0; i < _rc_max_chan_count; i++) { char nbuf[16]; /* min values */ sprintf(nbuf, "RC%d_MIN", i + 1); _parameter_handles.min[i] = param_find(nbuf); /* trim values */ sprintf(nbuf, "RC%d_TRIM", i + 1); _parameter_handles.trim[i] = param_find(nbuf); /* max values */ sprintf(nbuf, "RC%d_MAX", i + 1); _parameter_handles.max[i] = param_find(nbuf); /* channel reverse */ sprintf(nbuf, "RC%d_REV", i + 1); _parameter_handles.rev[i] = param_find(nbuf); /* channel deadzone */ sprintf(nbuf, "RC%d_DZ", i + 1); _parameter_handles.dz[i] = param_find(nbuf); } /* mandatory input switched, mapped to channels 1-4 per default */ _parameter_handles.rc_map_roll = param_find("RC_MAP_ROLL"); _parameter_handles.rc_map_pitch = param_find("RC_MAP_PITCH"); _parameter_handles.rc_map_yaw = param_find("RC_MAP_YAW"); _parameter_handles.rc_map_throttle = param_find("RC_MAP_THROTTLE"); /* mandatory mode switches, mapped to channel 5 and 6 per default */ _parameter_handles.rc_map_mode_sw = param_find("RC_MAP_MODE_SW"); _parameter_handles.rc_map_return_sw = param_find("RC_MAP_RETURN_SW"); _parameter_handles.rc_map_flaps = param_find("RC_MAP_FLAPS"); /* optional mode switches, not mapped per default */ _parameter_handles.rc_map_assisted_sw = param_find("RC_MAP_ASSIST_SW"); _parameter_handles.rc_map_mission_sw = param_find("RC_MAP_MISSIO_SW"); // _parameter_handles.rc_map_offboard_ctrl_mode_sw = param_find("RC_MAP_OFFB_SW"); _parameter_handles.rc_map_aux1 = param_find("RC_MAP_AUX1"); _parameter_handles.rc_map_aux2 = param_find("RC_MAP_AUX2"); _parameter_handles.rc_map_aux3 = param_find("RC_MAP_AUX3"); _parameter_handles.rc_map_aux4 = param_find("RC_MAP_AUX4"); _parameter_handles.rc_map_aux5 = param_find("RC_MAP_AUX5"); _parameter_handles.rc_scale_roll = param_find("RC_SCALE_ROLL"); _parameter_handles.rc_scale_pitch = param_find("RC_SCALE_PITCH"); _parameter_handles.rc_scale_yaw = param_find("RC_SCALE_YAW"); _parameter_handles.rc_scale_flaps = param_find("RC_SCALE_FLAPS"); /* gyro offsets */ _parameter_handles.gyro_offset[0] = param_find("SENS_GYRO_XOFF"); _parameter_handles.gyro_offset[1] = param_find("SENS_GYRO_YOFF"); _parameter_handles.gyro_offset[2] = param_find("SENS_GYRO_ZOFF"); _parameter_handles.gyro_scale[0] = param_find("SENS_GYRO_XSCALE"); _parameter_handles.gyro_scale[1] = param_find("SENS_GYRO_YSCALE"); _parameter_handles.gyro_scale[2] = param_find("SENS_GYRO_ZSCALE"); /* accel offsets */ _parameter_handles.accel_offset[0] = param_find("SENS_ACC_XOFF"); _parameter_handles.accel_offset[1] = param_find("SENS_ACC_YOFF"); _parameter_handles.accel_offset[2] = param_find("SENS_ACC_ZOFF"); _parameter_handles.accel_scale[0] = param_find("SENS_ACC_XSCALE"); _parameter_handles.accel_scale[1] = param_find("SENS_ACC_YSCALE"); _parameter_handles.accel_scale[2] = param_find("SENS_ACC_ZSCALE"); /* mag offsets */ _parameter_handles.mag_offset[0] = param_find("SENS_MAG_XOFF"); _parameter_handles.mag_offset[1] = param_find("SENS_MAG_YOFF"); _parameter_handles.mag_offset[2] = param_find("SENS_MAG_ZOFF"); _parameter_handles.mag_scale[0] = param_find("SENS_MAG_XSCALE"); _parameter_handles.mag_scale[1] = param_find("SENS_MAG_YSCALE"); _parameter_handles.mag_scale[2] = param_find("SENS_MAG_ZSCALE"); /* Differential pressure offset */ _parameter_handles.diff_pres_offset_pa = param_find("SENS_DPRES_OFF"); _parameter_handles.diff_pres_analog_enabled = param_find("SENS_DPRES_ANA"); _parameter_handles.battery_voltage_scaling = param_find("BAT_V_SCALING"); _parameter_handles.battery_current_scaling = param_find("BAT_C_SCALING"); /* rotations */ _parameter_handles.board_rotation = param_find("SENS_BOARD_ROT"); _parameter_handles.external_mag_rotation = param_find("SENS_EXT_MAG_ROT"); /* fetch initial parameter values */ parameters_update(); } Sensors::~Sensors() { if (_sensors_task != -1) { /* task wakes up every 100ms or so at the longest */ _task_should_exit = true; /* wait for a second for the task to quit at our request */ unsigned i = 0; do { /* wait 20ms */ usleep(20000); /* if we have given up, kill it */ if (++i > 50) { task_delete(_sensors_task); break; } } while (_sensors_task != -1); } sensors::g_sensors = nullptr; } int Sensors::parameters_update() { bool rc_valid = true; float tmpScaleFactor = 0.0f; float tmpRevFactor = 0.0f; /* rc values */ for (unsigned int i = 0; i < RC_CHANNELS_MAX; i++) { param_get(_parameter_handles.min[i], &(_parameters.min[i])); param_get(_parameter_handles.trim[i], &(_parameters.trim[i])); param_get(_parameter_handles.max[i], &(_parameters.max[i])); param_get(_parameter_handles.rev[i], &(_parameters.rev[i])); param_get(_parameter_handles.dz[i], &(_parameters.dz[i])); tmpScaleFactor = (1.0f / ((_parameters.max[i] - _parameters.min[i]) / 2.0f) * _parameters.rev[i]); tmpRevFactor = tmpScaleFactor * _parameters.rev[i]; /* handle blowup in the scaling factor calculation */ if (!isfinite(tmpScaleFactor) || (tmpRevFactor < 0.000001f) || (tmpRevFactor > 0.2f)) { warnx("RC chan %u not sane, scaling: %8.6f, rev: %d", i, tmpScaleFactor, (int)(_parameters.rev[i])); /* scaling factors do not make sense, lock them down */ _parameters.scaling_factor[i] = 0.0f; rc_valid = false; } else { _parameters.scaling_factor[i] = tmpScaleFactor; } } /* handle wrong values */ if (!rc_valid) warnx("WARNING WARNING WARNING\n\nRC CALIBRATION NOT SANE!\n\n"); /* channel mapping */ if (param_get(_parameter_handles.rc_map_roll, &(_parameters.rc_map_roll)) != OK) { warnx("Failed getting roll chan index"); } if (param_get(_parameter_handles.rc_map_pitch, &(_parameters.rc_map_pitch)) != OK) { warnx("Failed getting pitch chan index"); } if (param_get(_parameter_handles.rc_map_yaw, &(_parameters.rc_map_yaw)) != OK) { warnx("Failed getting yaw chan index"); } if (param_get(_parameter_handles.rc_map_throttle, &(_parameters.rc_map_throttle)) != OK) { warnx("Failed getting throttle chan index"); } if (param_get(_parameter_handles.rc_map_mode_sw, &(_parameters.rc_map_mode_sw)) != OK) { warnx("Failed getting mode sw chan index"); } if (param_get(_parameter_handles.rc_map_return_sw, &(_parameters.rc_map_return_sw)) != OK) { warnx("Failed getting return sw chan index"); } if (param_get(_parameter_handles.rc_map_assisted_sw, &(_parameters.rc_map_assisted_sw)) != OK) { warnx("Failed getting assisted sw chan index"); } if (param_get(_parameter_handles.rc_map_mission_sw, &(_parameters.rc_map_mission_sw)) != OK) { warnx("Failed getting mission sw chan index"); } if (param_get(_parameter_handles.rc_map_flaps, &(_parameters.rc_map_flaps)) != OK) { warnx("Failed getting flaps chan index"); } // if (param_get(_parameter_handles.rc_map_offboard_ctrl_mode_sw, &(_parameters.rc_map_offboard_ctrl_mode_sw)) != OK) { // warnx("Failed getting offboard control mode sw chan index"); // } param_get(_parameter_handles.rc_map_aux1, &(_parameters.rc_map_aux1)); param_get(_parameter_handles.rc_map_aux2, &(_parameters.rc_map_aux2)); param_get(_parameter_handles.rc_map_aux3, &(_parameters.rc_map_aux3)); param_get(_parameter_handles.rc_map_aux4, &(_parameters.rc_map_aux4)); param_get(_parameter_handles.rc_map_aux5, &(_parameters.rc_map_aux5)); param_get(_parameter_handles.rc_scale_roll, &(_parameters.rc_scale_roll)); param_get(_parameter_handles.rc_scale_pitch, &(_parameters.rc_scale_pitch)); param_get(_parameter_handles.rc_scale_yaw, &(_parameters.rc_scale_yaw)); param_get(_parameter_handles.rc_scale_flaps, &(_parameters.rc_scale_flaps)); /* update RC function mappings */ _rc.function[THROTTLE] = _parameters.rc_map_throttle - 1; _rc.function[ROLL] = _parameters.rc_map_roll - 1; _rc.function[PITCH] = _parameters.rc_map_pitch - 1; _rc.function[YAW] = _parameters.rc_map_yaw - 1; _rc.function[MODE] = _parameters.rc_map_mode_sw - 1; _rc.function[RETURN] = _parameters.rc_map_return_sw - 1; _rc.function[ASSISTED] = _parameters.rc_map_assisted_sw - 1; _rc.function[MISSION] = _parameters.rc_map_mission_sw - 1; _rc.function[FLAPS] = _parameters.rc_map_flaps - 1; // _rc.function[OFFBOARD_MODE] = _parameters.rc_map_offboard_ctrl_mode_sw - 1; _rc.function[AUX_1] = _parameters.rc_map_aux1 - 1; _rc.function[AUX_2] = _parameters.rc_map_aux2 - 1; _rc.function[AUX_3] = _parameters.rc_map_aux3 - 1; _rc.function[AUX_4] = _parameters.rc_map_aux4 - 1; _rc.function[AUX_5] = _parameters.rc_map_aux5 - 1; /* gyro offsets */ param_get(_parameter_handles.gyro_offset[0], &(_parameters.gyro_offset[0])); param_get(_parameter_handles.gyro_offset[1], &(_parameters.gyro_offset[1])); param_get(_parameter_handles.gyro_offset[2], &(_parameters.gyro_offset[2])); param_get(_parameter_handles.gyro_scale[0], &(_parameters.gyro_scale[0])); param_get(_parameter_handles.gyro_scale[1], &(_parameters.gyro_scale[1])); param_get(_parameter_handles.gyro_scale[2], &(_parameters.gyro_scale[2])); /* accel offsets */ param_get(_parameter_handles.accel_offset[0], &(_parameters.accel_offset[0])); param_get(_parameter_handles.accel_offset[1], &(_parameters.accel_offset[1])); param_get(_parameter_handles.accel_offset[2], &(_parameters.accel_offset[2])); param_get(_parameter_handles.accel_scale[0], &(_parameters.accel_scale[0])); param_get(_parameter_handles.accel_scale[1], &(_parameters.accel_scale[1])); param_get(_parameter_handles.accel_scale[2], &(_parameters.accel_scale[2])); /* mag offsets */ param_get(_parameter_handles.mag_offset[0], &(_parameters.mag_offset[0])); param_get(_parameter_handles.mag_offset[1], &(_parameters.mag_offset[1])); param_get(_parameter_handles.mag_offset[2], &(_parameters.mag_offset[2])); /* mag scaling */ param_get(_parameter_handles.mag_scale[0], &(_parameters.mag_scale[0])); param_get(_parameter_handles.mag_scale[1], &(_parameters.mag_scale[1])); param_get(_parameter_handles.mag_scale[2], &(_parameters.mag_scale[2])); /* Airspeed offset */ param_get(_parameter_handles.diff_pres_offset_pa, &(_parameters.diff_pres_offset_pa)); param_get(_parameter_handles.diff_pres_analog_enabled, &(_parameters.diff_pres_analog_enabled)); /* scaling of ADC ticks to battery voltage */ if (param_get(_parameter_handles.battery_voltage_scaling, &(_parameters.battery_voltage_scaling)) != OK) { warnx("Failed updating voltage scaling param"); } /* scaling of ADC ticks to battery current */ if (param_get(_parameter_handles.battery_current_scaling, &(_parameters.battery_current_scaling)) != OK) { warnx("Failed updating current scaling param"); } param_get(_parameter_handles.board_rotation, &(_parameters.board_rotation)); param_get(_parameter_handles.external_mag_rotation, &(_parameters.external_mag_rotation)); get_rot_matrix((enum Rotation)_parameters.board_rotation, &_board_rotation); get_rot_matrix((enum Rotation)_parameters.external_mag_rotation, &_external_mag_rotation); return OK; } void Sensors::accel_init() { int fd; fd = open(ACCEL_DEVICE_PATH, 0); if (fd < 0) { warn("%s", ACCEL_DEVICE_PATH); errx(1, "FATAL: no accelerometer found"); } else { // XXX do the check more elegantly #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 /* set the accel internal sampling rate up to at leat 1000Hz */ ioctl(fd, ACCELIOCSSAMPLERATE, 1000); /* set the driver to poll at 1000Hz */ ioctl(fd, SENSORIOCSPOLLRATE, 1000); #elif CONFIG_ARCH_BOARD_PX4FMU_V2 /* set the accel internal sampling rate up to at leat 800Hz */ ioctl(fd, ACCELIOCSSAMPLERATE, 800); /* set the driver to poll at 800Hz */ ioctl(fd, SENSORIOCSPOLLRATE, 800); #else #error Need a board configuration, either CONFIG_ARCH_BOARD_PX4FMU_V1 or CONFIG_ARCH_BOARD_PX4FMU_V2 #endif warnx("using system accel"); close(fd); } } void Sensors::gyro_init() { int fd; fd = open(GYRO_DEVICE_PATH, 0); if (fd < 0) { warn("%s", GYRO_DEVICE_PATH); errx(1, "FATAL: no gyro found"); } else { // XXX do the check more elegantly #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 /* set the gyro internal sampling rate up to at least 1000Hz */ if (ioctl(fd, GYROIOCSSAMPLERATE, 1000) != OK) ioctl(fd, GYROIOCSSAMPLERATE, 800); /* set the driver to poll at 1000Hz */ if (ioctl(fd, SENSORIOCSPOLLRATE, 1000) != OK) ioctl(fd, SENSORIOCSPOLLRATE, 800); #else /* set the gyro internal sampling rate up to at least 760Hz */ ioctl(fd, GYROIOCSSAMPLERATE, 760); /* set the driver to poll at 760Hz */ ioctl(fd, SENSORIOCSPOLLRATE, 760); #endif warnx("using system gyro"); close(fd); } } void Sensors::mag_init() { int fd; int ret; fd = open(MAG_DEVICE_PATH, 0); if (fd < 0) { warn("%s", MAG_DEVICE_PATH); errx(1, "FATAL: no magnetometer found"); } /* try different mag sampling rates */ ret = ioctl(fd, MAGIOCSSAMPLERATE, 150); if (ret == OK) { /* set the pollrate accordingly */ ioctl(fd, SENSORIOCSPOLLRATE, 150); } else { ret = ioctl(fd, MAGIOCSSAMPLERATE, 100); /* if the slower sampling rate still fails, something is wrong */ if (ret == OK) { /* set the driver to poll also at the slower rate */ ioctl(fd, SENSORIOCSPOLLRATE, 100); } else { errx(1, "FATAL: mag sampling rate could not be set"); } } ret = ioctl(fd, MAGIOCGEXTERNAL, 0); if (ret < 0) errx(1, "FATAL: unknown if magnetometer is external or onboard"); else if (ret == 1) _mag_is_external = true; else _mag_is_external = false; close(fd); } void Sensors::baro_init() { int fd; fd = open(BARO_DEVICE_PATH, 0); if (fd < 0) { warn("%s", BARO_DEVICE_PATH); errx(1, "FATAL: No barometer found"); } /* set the driver to poll at 150Hz */ ioctl(fd, SENSORIOCSPOLLRATE, 150); close(fd); } void Sensors::adc_init() { _fd_adc = open(ADC_DEVICE_PATH, O_RDONLY | O_NONBLOCK); if (_fd_adc < 0) { warn(ADC_DEVICE_PATH); warnx("FATAL: no ADC found"); } } void Sensors::accel_poll(struct sensor_combined_s &raw) { bool accel_updated; orb_check(_accel_sub, &accel_updated); if (accel_updated) { struct accel_report accel_report; orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report); math::Vector3 vect = {accel_report.x, accel_report.y, accel_report.z}; vect = _board_rotation * vect; raw.accelerometer_m_s2[0] = vect(0); raw.accelerometer_m_s2[1] = vect(1); raw.accelerometer_m_s2[2] = vect(2); raw.accelerometer_raw[0] = accel_report.x_raw; raw.accelerometer_raw[1] = accel_report.y_raw; raw.accelerometer_raw[2] = accel_report.z_raw; raw.accelerometer_counter++; } } void Sensors::gyro_poll(struct sensor_combined_s &raw) { bool gyro_updated; orb_check(_gyro_sub, &gyro_updated); if (gyro_updated) { struct gyro_report gyro_report; orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report); math::Vector3 vect = {gyro_report.x, gyro_report.y, gyro_report.z}; vect = _board_rotation * vect; raw.gyro_rad_s[0] = vect(0); raw.gyro_rad_s[1] = vect(1); raw.gyro_rad_s[2] = vect(2); raw.gyro_raw[0] = gyro_report.x_raw; raw.gyro_raw[1] = gyro_report.y_raw; raw.gyro_raw[2] = gyro_report.z_raw; raw.gyro_counter++; } } void Sensors::mag_poll(struct sensor_combined_s &raw) { bool mag_updated; orb_check(_mag_sub, &mag_updated); if (mag_updated) { struct mag_report mag_report; orb_copy(ORB_ID(sensor_mag), _mag_sub, &mag_report); math::Vector3 vect = {mag_report.x, mag_report.y, mag_report.z}; if (_mag_is_external) vect = _external_mag_rotation * vect; else vect = _board_rotation * vect; raw.magnetometer_ga[0] = vect(0); raw.magnetometer_ga[1] = vect(1); raw.magnetometer_ga[2] = vect(2); raw.magnetometer_raw[0] = mag_report.x_raw; raw.magnetometer_raw[1] = mag_report.y_raw; raw.magnetometer_raw[2] = mag_report.z_raw; raw.magnetometer_counter++; } } void Sensors::baro_poll(struct sensor_combined_s &raw) { bool baro_updated; orb_check(_baro_sub, &baro_updated); if (baro_updated) { orb_copy(ORB_ID(sensor_baro), _baro_sub, &_barometer); raw.baro_pres_mbar = _barometer.pressure; // Pressure in mbar raw.baro_alt_meter = _barometer.altitude; // Altitude in meters raw.baro_temp_celcius = _barometer.temperature; // Temperature in degrees celcius raw.baro_counter++; } } void Sensors::diff_pres_poll(struct sensor_combined_s &raw) { bool updated; orb_check(_diff_pres_sub, &updated); if (updated) { orb_copy(ORB_ID(differential_pressure), _diff_pres_sub, &_diff_pres); raw.differential_pressure_pa = _diff_pres.differential_pressure_pa; raw.differential_pressure_counter++; _airspeed.indicated_airspeed_m_s = calc_indicated_airspeed(_diff_pres.differential_pressure_pa); _airspeed.true_airspeed_m_s = calc_true_airspeed(_diff_pres.differential_pressure_pa + raw.baro_pres_mbar * 1e2f, raw.baro_pres_mbar * 1e2f, raw.baro_temp_celcius - PCB_TEMP_ESTIMATE_DEG); /* announce the airspeed if needed, just publish else */ if (_airspeed_pub > 0) { orb_publish(ORB_ID(airspeed), _airspeed_pub, &_airspeed); } else { _airspeed_pub = orb_advertise(ORB_ID(airspeed), &_airspeed); } } } void Sensors::vehicle_control_mode_poll() { struct vehicle_control_mode_s vcontrol_mode; bool vcontrol_mode_updated; /* Check HIL state if vehicle control mode has changed */ orb_check(_vcontrol_mode_sub, &vcontrol_mode_updated); if (vcontrol_mode_updated) { orb_copy(ORB_ID(vehicle_control_mode), _vcontrol_mode_sub, &vcontrol_mode); /* switching from non-HIL to HIL mode */ //printf("[sensors] Vehicle mode: %i \t AND: %i, HIL: %i\n", vstatus.mode, vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED, hil_enabled); if (vcontrol_mode.flag_system_hil_enabled && !_hil_enabled) { _hil_enabled = true; _publishing = false; /* switching from HIL to non-HIL mode */ } else if (!_publishing && !_hil_enabled) { _hil_enabled = false; _publishing = true; } } } void Sensors::parameter_update_poll(bool forced) { bool param_updated; /* Check if any parameter has changed */ orb_check(_params_sub, ¶m_updated); if (param_updated || forced) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); /* update parameters */ parameters_update(); /* update sensor offsets */ int fd = open(GYRO_DEVICE_PATH, 0); struct gyro_scale gscale = { _parameters.gyro_offset[0], _parameters.gyro_scale[0], _parameters.gyro_offset[1], _parameters.gyro_scale[1], _parameters.gyro_offset[2], _parameters.gyro_scale[2], }; if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale)) warn("WARNING: failed to set scale / offsets for gyro"); close(fd); fd = open(ACCEL_DEVICE_PATH, 0); struct accel_scale ascale = { _parameters.accel_offset[0], _parameters.accel_scale[0], _parameters.accel_offset[1], _parameters.accel_scale[1], _parameters.accel_offset[2], _parameters.accel_scale[2], }; if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale)) warn("WARNING: failed to set scale / offsets for accel"); close(fd); fd = open(MAG_DEVICE_PATH, 0); struct mag_scale mscale = { _parameters.mag_offset[0], _parameters.mag_scale[0], _parameters.mag_offset[1], _parameters.mag_scale[1], _parameters.mag_offset[2], _parameters.mag_scale[2], }; if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale)) warn("WARNING: failed to set scale / offsets for mag"); close(fd); fd = open(AIRSPEED_DEVICE_PATH, 0); /* this sensor is optional, abort without error */ if (fd > 0) { struct airspeed_scale airscale = { _parameters.diff_pres_offset_pa, 1.0f, }; if (OK != ioctl(fd, AIRSPEEDIOCSSCALE, (long unsigned int)&airscale)) warn("WARNING: failed to set scale / offsets for airspeed sensor"); } #if 0 printf("CH0: RAW MAX: %d MIN %d S: %d MID: %d FUNC: %d\n", (int)_parameters.max[0], (int)_parameters.min[0], (int)(_rc.chan[0].scaling_factor * 10000), (int)(_rc.chan[0].mid), (int)_rc.function[0]); printf("CH1: RAW MAX: %d MIN %d S: %d MID: %d FUNC: %d\n", (int)_parameters.max[1], (int)_parameters.min[1], (int)(_rc.chan[1].scaling_factor * 10000), (int)(_rc.chan[1].mid), (int)_rc.function[1]); printf("MAN: %d %d\n", (int)(_rc.chan[0].scaled * 100), (int)(_rc.chan[1].scaled * 100)); fflush(stdout); usleep(5000); #endif } } void Sensors::adc_poll(struct sensor_combined_s &raw) { /* only read if publishing */ if (!_publishing) return; /* rate limit to 100 Hz */ if (hrt_absolute_time() - _last_adc >= 10000) { /* make space for a maximum of eight channels */ struct adc_msg_s buf_adc[8]; /* read all channels available */ int ret = read(_fd_adc, &buf_adc, sizeof(buf_adc)); for (unsigned i = 0; i < sizeof(buf_adc) / sizeof(buf_adc[0]); i++) { if (ret >= (int)sizeof(buf_adc[0])) { /* Save raw voltage values */ if (i < (sizeof(raw.adc_voltage_v)) / sizeof(raw.adc_voltage_v[0])) { raw.adc_voltage_v[i] = buf_adc[i].am_data / (4096.0f / 3.3f); } /* look for specific channels and process the raw voltage to measurement data */ if (ADC_BATTERY_VOLTAGE_CHANNEL == buf_adc[i].am_channel) { /* Voltage in volts */ float voltage = (buf_adc[i].am_data * _parameters.battery_voltage_scaling); if (voltage > VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) { /* one-time initialization of low-pass value to avoid long init delays */ if (_battery_status.voltage_v < VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) { _battery_status.voltage_v = voltage; } _battery_status.timestamp = hrt_absolute_time(); _battery_status.voltage_v = (BAT_VOL_LOWPASS_1 * (_battery_status.voltage_v + BAT_VOL_LOWPASS_2 * voltage));; } else { /* mark status as invalid */ _battery_status.timestamp = 0; } } else if (ADC_BATTERY_CURRENT_CHANNEL == buf_adc[i].am_channel) { /* handle current only if voltage is valid */ if (_battery_status.timestamp != 0) { _battery_status.current_a = (buf_adc[i].am_data * _parameters.battery_current_scaling); float dt = fminf(20.0f, (hrt_absolute_time() - _last_adc) * 0.001f); // in ms, limit to 20ms _battery_status.discharged_mah += _battery_status.current_a * dt; } } else if (ADC_AIRSPEED_VOLTAGE_CHANNEL == buf_adc[i].am_channel) { /* calculate airspeed, raw is the difference from */ float voltage = (float)(buf_adc[i].am_data) * 3.3f / 4096.0f * 2.0f; //V_ref/4096 * (voltage divider factor) /** * The voltage divider pulls the signal down, only act on * a valid voltage from a connected sensor. Also assume a non- * zero offset from the sensor if its connected. */ if (voltage > 0.4f && _parameters.diff_pres_analog_enabled) { float diff_pres_pa = voltage * 1000.0f - _parameters.diff_pres_offset_pa; //for MPXV7002DP sensor _diff_pres.timestamp = hrt_absolute_time(); _diff_pres.differential_pressure_pa = diff_pres_pa; _diff_pres.voltage = voltage; /* announce the airspeed if needed, just publish else */ if (_diff_pres_pub > 0) { orb_publish(ORB_ID(differential_pressure), _diff_pres_pub, &_diff_pres); } else { _diff_pres_pub = orb_advertise(ORB_ID(differential_pressure), &_diff_pres); } } } _last_adc = hrt_absolute_time(); } } if (_battery_status.timestamp != 0) { /* announce the battery status if needed, just publish else */ if (_battery_pub > 0) { orb_publish(ORB_ID(battery_status), _battery_pub, &_battery_status); } else { _battery_pub = orb_advertise(ORB_ID(battery_status), &_battery_status); } } } } void Sensors::rc_poll() { bool rc_updated; orb_check(_rc_sub, &rc_updated); if (rc_updated) { /* read low-level values from FMU or IO RC inputs (PPM, Spektrum, S.Bus) */ struct rc_input_values rc_input; orb_copy(ORB_ID(input_rc), _rc_sub, &rc_input); struct manual_control_setpoint_s manual_control; struct actuator_controls_s actuator_group_3; /* initialize to default values */ manual_control.roll = NAN; manual_control.pitch = NAN; manual_control.yaw = NAN; manual_control.throttle = NAN; manual_control.mode_switch = NAN; manual_control.return_switch = NAN; manual_control.assisted_switch = NAN; manual_control.mission_switch = NAN; // manual_control.auto_offboard_input_switch = NAN; manual_control.flaps = NAN; manual_control.aux1 = NAN; manual_control.aux2 = NAN; manual_control.aux3 = NAN; manual_control.aux4 = NAN; manual_control.aux5 = NAN; /* require at least four channels to consider the signal valid */ if (rc_input.channel_count < 4) return; unsigned channel_limit = rc_input.channel_count; if (channel_limit > _rc_max_chan_count) channel_limit = _rc_max_chan_count; /* we are accepting this message */ _rc_last_valid = rc_input.timestamp; /* Read out values from raw message */ for (unsigned int i = 0; i < channel_limit; i++) { /* * 1) Constrain to min/max values, as later processing depends on bounds. */ if (rc_input.values[i] < _parameters.min[i]) rc_input.values[i] = _parameters.min[i]; if (rc_input.values[i] > _parameters.max[i]) rc_input.values[i] = _parameters.max[i]; /* * 2) Scale around the mid point differently for lower and upper range. * * This is necessary as they don't share the same endpoints and slope. * * First normalize to 0..1 range with correct sign (below or above center), * the total range is 2 (-1..1). * If center (trim) == min, scale to 0..1, if center (trim) == max, * scale to -1..0. * * As the min and max bounds were enforced in step 1), division by zero * cannot occur, as for the case of center == min or center == max the if * statement is mutually exclusive with the arithmetic NaN case. * * DO NOT REMOVE OR ALTER STEP 1! */ if (rc_input.values[i] > (_parameters.trim[i] + _parameters.dz[i])) { _rc.chan[i].scaled = (rc_input.values[i] - _parameters.trim[i] - _parameters.dz[i]) / (float)(_parameters.max[i] - _parameters.trim[i] - _parameters.dz[i]); } else if (rc_input.values[i] < (_parameters.trim[i] - _parameters.dz[i])) { _rc.chan[i].scaled = (rc_input.values[i] - _parameters.trim[i] + _parameters.dz[i]) / (float)(_parameters.trim[i] - _parameters.min[i] - _parameters.dz[i]); } else { /* in the configured dead zone, output zero */ _rc.chan[i].scaled = 0.0f; } _rc.chan[i].scaled *= _parameters.rev[i]; /* handle any parameter-induced blowups */ if (!isfinite(_rc.chan[i].scaled)) _rc.chan[i].scaled = 0.0f; } _rc.chan_count = rc_input.channel_count; _rc.timestamp = rc_input.timestamp; manual_control.timestamp = rc_input.timestamp; /* roll input - rolling right is stick-wise and rotation-wise positive */ manual_control.roll = limit_minus_one_to_one(_rc.chan[_rc.function[ROLL]].scaled); /* * pitch input - stick down is negative, but stick down is pitching up (pos) in NED, * so reverse sign. */ manual_control.pitch = limit_minus_one_to_one(-1.0f * _rc.chan[_rc.function[PITCH]].scaled); /* yaw input - stick right is positive and positive rotation */ manual_control.yaw = limit_minus_one_to_one(_rc.chan[_rc.function[YAW]].scaled); /* throttle input */ manual_control.throttle = _rc.chan[_rc.function[THROTTLE]].scaled; if (manual_control.throttle < 0.0f) manual_control.throttle = 0.0f; if (manual_control.throttle > 1.0f) manual_control.throttle = 1.0f; /* scale output */ if (isfinite(_parameters.rc_scale_roll) && _parameters.rc_scale_roll > 0.0f) { manual_control.roll *= _parameters.rc_scale_roll; } if (isfinite(_parameters.rc_scale_pitch) && _parameters.rc_scale_pitch > 0.0f) { manual_control.pitch *= _parameters.rc_scale_pitch; } if (isfinite(_parameters.rc_scale_yaw) && _parameters.rc_scale_yaw > 0.0f) { manual_control.yaw *= _parameters.rc_scale_yaw; } /* mode switch input */ manual_control.mode_switch = limit_minus_one_to_one(_rc.chan[_rc.function[MODE]].scaled); /* land switch input */ manual_control.return_switch = limit_minus_one_to_one(_rc.chan[_rc.function[RETURN]].scaled); /* assisted switch input */ manual_control.assisted_switch = limit_minus_one_to_one(_rc.chan[_rc.function[ASSISTED]].scaled); /* mission switch input */ manual_control.mission_switch = limit_minus_one_to_one(_rc.chan[_rc.function[MISSION]].scaled); /* flaps */ if (_rc.function[FLAPS] >= 0) { manual_control.flaps = limit_minus_one_to_one(_rc.chan[_rc.function[FLAPS]].scaled); if (isfinite(_parameters.rc_scale_flaps) && _parameters.rc_scale_flaps > 0.0f) { manual_control.flaps *= _parameters.rc_scale_flaps; } } if (_rc.function[MODE] >= 0) { manual_control.mode_switch = limit_minus_one_to_one(_rc.chan[_rc.function[MODE]].scaled); } if (_rc.function[MISSION] >= 0) { manual_control.mission_switch = limit_minus_one_to_one(_rc.chan[_rc.function[MISSION]].scaled); } // if (_rc.function[OFFBOARD_MODE] >= 0) { // manual_control.auto_offboard_input_switch = limit_minus_one_to_one(_rc.chan[_rc.function[OFFBOARD_MODE]].scaled); // } /* aux functions, only assign if valid mapping is present */ if (_rc.function[AUX_1] >= 0) { manual_control.aux1 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_1]].scaled); } if (_rc.function[AUX_2] >= 0) { manual_control.aux2 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_2]].scaled); } if (_rc.function[AUX_3] >= 0) { manual_control.aux3 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_3]].scaled); } if (_rc.function[AUX_4] >= 0) { manual_control.aux4 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_4]].scaled); } if (_rc.function[AUX_5] >= 0) { manual_control.aux5 = limit_minus_one_to_one(_rc.chan[_rc.function[AUX_5]].scaled); } /* copy from mapped manual control to control group 3 */ actuator_group_3.control[0] = manual_control.roll; actuator_group_3.control[1] = manual_control.pitch; actuator_group_3.control[2] = manual_control.yaw; actuator_group_3.control[3] = manual_control.throttle; actuator_group_3.control[4] = manual_control.flaps; actuator_group_3.control[5] = manual_control.aux1; actuator_group_3.control[6] = manual_control.aux2; actuator_group_3.control[7] = manual_control.aux3; /* check if ready for publishing */ if (_rc_pub > 0) { orb_publish(ORB_ID(rc_channels), _rc_pub, &_rc); } else { /* advertise the rc topic */ _rc_pub = orb_advertise(ORB_ID(rc_channels), &_rc); } /* check if ready for publishing */ if (_manual_control_pub > 0) { orb_publish(ORB_ID(manual_control_setpoint), _manual_control_pub, &manual_control); } else { _manual_control_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual_control); } /* check if ready for publishing */ if (_actuator_group_3_pub > 0) { orb_publish(ORB_ID(actuator_controls_3), _actuator_group_3_pub, &actuator_group_3); } else { _actuator_group_3_pub = orb_advertise(ORB_ID(actuator_controls_3), &actuator_group_3); } } } void Sensors::task_main_trampoline(int argc, char *argv[]) { sensors::g_sensors->task_main(); } void Sensors::task_main() { /* inform about start */ warnx("Initializing.."); /* start individual sensors */ accel_init(); gyro_init(); mag_init(); baro_init(); adc_init(); /* * do subscriptions */ _gyro_sub = orb_subscribe(ORB_ID(sensor_gyro)); _accel_sub = orb_subscribe(ORB_ID(sensor_accel)); _mag_sub = orb_subscribe(ORB_ID(sensor_mag)); _rc_sub = orb_subscribe(ORB_ID(input_rc)); _baro_sub = orb_subscribe(ORB_ID(sensor_baro)); _diff_pres_sub = orb_subscribe(ORB_ID(differential_pressure)); _vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_control_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); /* rate limit vehicle status updates to 5Hz */ orb_set_interval(_vcontrol_mode_sub, 200); /* rate limit gyro to 250 Hz (the gyro signal is lowpassed accordingly earlier) */ orb_set_interval(_gyro_sub, 4); /* * do advertisements */ struct sensor_combined_s raw; memset(&raw, 0, sizeof(raw)); raw.timestamp = hrt_absolute_time(); raw.adc_voltage_v[0] = 0.0f; raw.adc_voltage_v[1] = 0.0f; raw.adc_voltage_v[2] = 0.0f; raw.adc_voltage_v[3] = 0.0f; memset(&_battery_status, 0, sizeof(_battery_status)); _battery_status.voltage_v = BAT_VOL_INITIAL; /* get a set of initial values */ accel_poll(raw); gyro_poll(raw); mag_poll(raw); baro_poll(raw); diff_pres_poll(raw); parameter_update_poll(true /* forced */); /* advertise the sensor_combined topic and make the initial publication */ _sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw); /* wakeup source(s) */ struct pollfd fds[1]; /* use the gyro to pace output - XXX BROKEN if we are using the L3GD20 */ fds[0].fd = _gyro_sub; fds[0].events = POLLIN; while (!_task_should_exit) { /* wait for up to 100ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* check vehicle status for changes to publication state */ vehicle_control_mode_poll(); /* check parameters for updates */ parameter_update_poll(); /* store the time closest to all measurements (this is bogus, sensor timestamps should be propagated...) */ raw.timestamp = hrt_absolute_time(); /* copy most recent sensor data */ gyro_poll(raw); accel_poll(raw); mag_poll(raw); baro_poll(raw); /* check battery voltage */ adc_poll(raw); diff_pres_poll(raw); /* Inform other processes that new data is available to copy */ if (_publishing) orb_publish(ORB_ID(sensor_combined), _sensor_pub, &raw); /* Look for new r/c input data */ rc_poll(); perf_end(_loop_perf); } printf("[sensors] exiting.\n"); _sensors_task = -1; _exit(0); } int Sensors::start() { ASSERT(_sensors_task == -1); /* start the task */ _sensors_task = task_spawn_cmd("sensors_task", SCHED_DEFAULT, SCHED_PRIORITY_MAX - 5, 2048, (main_t)&Sensors::task_main_trampoline, nullptr); if (_sensors_task < 0) { warn("task start failed"); return -errno; } return OK; } int sensors_main(int argc, char *argv[]) { if (argc < 1) errx(1, "usage: sensors {start|stop|status}"); if (!strcmp(argv[1], "start")) { if (sensors::g_sensors != nullptr) errx(0, "sensors task already running"); sensors::g_sensors = new Sensors; if (sensors::g_sensors == nullptr) errx(1, "sensors task alloc failed"); if (OK != sensors::g_sensors->start()) { delete sensors::g_sensors; sensors::g_sensors = nullptr; err(1, "sensors task start failed"); } exit(0); } if (!strcmp(argv[1], "stop")) { if (sensors::g_sensors == nullptr) errx(1, "sensors task not running"); delete sensors::g_sensors; sensors::g_sensors = nullptr; exit(0); } if (!strcmp(argv[1], "status")) { if (sensors::g_sensors) { errx(0, "task is running"); } else { errx(1, "task is not running"); } } warnx("unrecognized command"); return 1; }