/**************************************************************************** * * Copyright (c) 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file mc_mixer.cpp * Dummy multicopter mixer for euroc simulator (gazebo) * * @author Roman Bapst */ #include #include #include #include class MultirotorMixer { public: MultirotorMixer(); struct Rotor { float roll_scale; float pitch_scale; float yaw_scale; }; void actuatorControlsCallback(const PX4_TOPIC_T(actuator_controls_0) &msg); private: ros::NodeHandle _n; ros::Subscriber _sub; ros::Publisher _pub; const Rotor *_rotors; unsigned _rotor_count; struct { float control[6]; }inputs; struct { float control[6]; }outputs; void mix(); }; const MultirotorMixer::Rotor _config_x[] = { { -0.707107, 0.707107, 1.00 }, { 0.707107, -0.707107, 1.00 }, { 0.707107, 0.707107, -1.00 }, { -0.707107, -0.707107, -1.00 }, }; const MultirotorMixer::Rotor _config_quad_plus[] = { { -1.000000, 0.000000, 1.00 }, { 1.000000, 0.000000, 1.00 }, { 0.000000, 1.000000, -1.00 }, { -0.000000, -1.000000, -1.00 }, }; const MultirotorMixer::Rotor *_config_index[3] = { &_config_x[0], &_config_quad_plus[0], }; MultirotorMixer::MultirotorMixer(): _n(), _rotor_count(4), _rotors(_config_index[1]) //XXX +config hardcoded { _sub = _n.subscribe("actuator_controls_0", 1, &MultirotorMixer::actuatorControlsCallback,this); _pub = _n.advertise("/mixed_motor_commands",10); if (!_n.hasParam("motor_scaling_radps")) { _n.setParam("motor_scaling_radps", 1500.0); } } void MultirotorMixer::mix() { float roll = math::constrain(inputs.control[0], -1.0f, 1.0f); float pitch = math::constrain(inputs.control[1], -1.0f, 1.0f); float yaw = math::constrain(inputs.control[2], -1.0f, 1.0f); float thrust = math::constrain(inputs.control[3], 0.0f, 1.0f); float min_out = 0.0f; float max_out = 0.0f; /* perform initial mix pass yielding unbounded outputs, ignore yaw */ for (unsigned i = 0; i < _rotor_count; i++) { float out = roll * _rotors[i].roll_scale + pitch * _rotors[i].pitch_scale + thrust; /* limit yaw if it causes outputs clipping */ if (out >= 0.0f && out < -yaw * _rotors[i].yaw_scale) { yaw = -out / _rotors[i].yaw_scale; } /* calculate min and max output values */ if (out < min_out) { min_out = out; } if (out > max_out) { max_out = out; } outputs.control[i] = out; } /* scale down roll/pitch controls if some outputs are negative, don't add yaw, keep total thrust */ if (min_out < 0.0f) { float scale_in = thrust / (thrust - min_out); /* mix again with adjusted controls */ for (unsigned i = 0; i < _rotor_count; i++) { outputs.control[i] = scale_in * (roll * _rotors[i].roll_scale + pitch * _rotors[i].pitch_scale) + thrust; } } else { /* roll/pitch mixed without limiting, add yaw control */ for (unsigned i = 0; i < _rotor_count; i++) { outputs.control[i] += yaw * _rotors[i].yaw_scale; } } /* scale down all outputs if some outputs are too large, reduce total thrust */ float scale_out; if (max_out > 1.0f) { scale_out = 1.0f / max_out; } else { scale_out = 1.0f; } /* scale outputs to range _idle_speed..1, and do final limiting */ for (unsigned i = 0; i < _rotor_count; i++) { outputs.control[i] = math::constrain(outputs.control[i], 0.0f, 1.0f); } } void MultirotorMixer::actuatorControlsCallback(const PX4_TOPIC_T(actuator_controls_0) &msg) { // read message for(int i = 0;i < msg.NUM_ACTUATOR_CONTROLS;i++) { inputs.control[i] = msg.control[i]; } // mix mix(); // publish message mav_msgs::MotorSpeed rotor_vel_msg; double scaling; _n.getParamCached("motor_scaling_radps", scaling); for (int i = 0; i < _rotor_count; i++) { rotor_vel_msg.motor_speed.push_back(outputs.control[i] * scaling); } _pub.publish(rotor_vel_msg); } int main(int argc, char **argv) { ros::init(argc, argv, "mc_mixer"); MultirotorMixer mixer; ros::spin(); return 0; }